Refactor Prometheus and Add Request Level Metrics (#2316)

This commit is contained in:
Robert Shaw 2024-01-31 14:58:07 -08:00 committed by GitHub
parent d0d93b92b1
commit 93b38bea5d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 1230 additions and 98 deletions

View File

@ -0,0 +1,54 @@
# vLLM + Prometheus/Grafana
This is a simple example that shows you how to connect vLLM metric logging to the Prometheus/Grafana stack. For this example, we launch Prometheus and Grafana via Docker. You can checkout other methods through [Prometheus](https://prometheus.io/) and [Grafana](https://grafana.com/) websites.
Install:
- [`docker`](https://docs.docker.com/engine/install/)
- [`docker compose`](https://docs.docker.com/compose/install/linux/#install-using-the-repository)
### Launch
Prometheus metric logging is enabled by default in the OpenAI-compatible server. Launch via the entrypoint:
```bash
python3 -m vllm.entrypoints.openai.api_server \
--model mistralai/Mistral-7B-v0.1 \
--max-model-len 2048 \
--disable-log-requests
```
Launch Prometheus and Grafana servers with `docker compose`:
```bash
docker compose up
```
Submit some sample requests to the server:
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 ../../benchmarks/benchmark_serving.py \
--model mistralai/Mistral-7B-v0.1 \
--tokenizer mistralai/Mistral-7B-v0.1 \
--endpoint /v1/completions \
--dataset ShareGPT_V3_unfiltered_cleaned_split.json \
--request-rate 3.0
```
Navigating to [`http://localhost:8000/metrics`](http://localhost:8000/metrics) will show the raw Prometheus metrics being exposed by vLLM.
### Grafana Dashboard
Navigate to [`http://localhost:3000`](http://localhost:3000). Log in with the default username (`admin`) and password (`admin`).
#### Add Prometheus Data Source
Navigate to [`http://localhost:3000/connections/datasources/new`](http://localhost:3000/connections/datasources/new) and select Prometheus.
On Prometheus configuration page, we need to add the `Prometheus Server URL` in `Connection`. For this setup, Grafana and Prometheus are running in separate containers, but Docker creates DNS name for each containers. You can just use `http://prometheus:9090`.
Click `Save & Test`. You should get a green check saying "Successfully queried the Prometheus API.".
#### Import Dashboard
Navigate to [`http://localhost:3000/dashboard/import`](http://localhost:3000/dashboard/import), upload `grafana.json`, and select the `prometheus` datasource. You should see a screen that looks like the following:
![Grafana Dashboard Image](https://i.imgur.com/R2vH9VW.png)

View File

@ -0,0 +1,19 @@
# docker-compose.yaml
version: "3"
services:
prometheus:
image: prom/prometheus:latest
extra_hosts:
- "host.docker.internal:host-gateway" # allow a direct connection from container to the local machine
ports:
- "9090:9090" # the default port used by Prometheus
volumes:
- ${PWD}/prometheus.yaml:/etc/prometheus/prometheus.yml # mount Prometheus config file
grafana:
image: grafana/grafana:latest
depends_on:
- prometheus
ports:
- "3000:3000" # the default port used by Grafana

View File

@ -0,0 +1,931 @@
{
"__inputs": [
{
"name": "DS_PROMETHEUS",
"label": "prometheus",
"description": "",
"type": "datasource",
"pluginId": "prometheus",
"pluginName": "Prometheus"
}
],
"__elements": {},
"__requires": [
{
"type": "grafana",
"id": "grafana",
"name": "Grafana",
"version": "10.2.3"
},
{
"type": "datasource",
"id": "prometheus",
"name": "Prometheus",
"version": "1.0.0"
},
{
"type": "panel",
"id": "timeseries",
"name": "Time series",
"version": ""
}
],
"annotations": {
"list": [
{
"builtIn": 1,
"datasource": {
"type": "grafana",
"uid": "-- Grafana --"
},
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"type": "dashboard"
}
]
},
"description": "Monitoring vLLM Inference Server",
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": null,
"links": [],
"liveNow": false,
"panels": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "End to end request latency measured in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 0
},
"id": 9,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:e2e_request_latency_seconds_sum[$__rate_interval])\n/\nrate(vllm:e2e_request_latency_seconds_count[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Average",
"range": true,
"refId": "E"
}
],
"title": "E2E Request Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Number of tokens processed per second",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
},
"id": 8,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "rate(vllm:prompt_tokens_total[$__rate_interval])",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "Prompt Tokens/Sec",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "rate(vllm:generation_tokens_total[$__rate_interval])",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "Generation Tokens/Sec",
"range": true,
"refId": "B",
"useBackend": false
}
],
"title": "Token Throughput",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Inter token latency in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
},
"id": 10,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:time_per_output_token_seconds_sum[$__rate_interval])\n/\nrate(vllm:time_per_output_token_seconds_count[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Mean",
"range": true,
"refId": "E"
}
],
"title": "Time Per Output Token Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Number of requests in RUNNING, WAITING, and SWAPPED state",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "none"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 8
},
"id": 3,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_running",
"fullMetaSearch": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Running",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_swapped",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Swapped",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_waiting",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Waiting",
"range": true,
"refId": "C",
"useBackend": false
}
],
"title": "Scheduler State",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "P50, P90, P95, and P99 TTFT latency in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 16
},
"id": 5,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:time_to_first_token_seconds_sum[$__rate_interval])\n/\nrate(vllm:time_to_first_token_seconds_count[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Average",
"range": true,
"refId": "E"
}
],
"title": "Time To First Token Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Percentage of used cache blocks by vLLM.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "percentunit"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 16
},
"id": 4,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "vllm:gpu_cache_usage_perc",
"instant": false,
"legendFormat": "GPU Cache Usage",
"range": true,
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "vllm:cpu_cache_usage_perc",
"hide": false,
"instant": false,
"legendFormat": "CPU Cache Usage",
"range": true,
"refId": "B"
}
],
"title": "Cache Utilization",
"type": "timeseries"
}
],
"refresh": "",
"schemaVersion": 39,
"tags": [],
"templating": {
"list": []
},
"time": {
"from": "now-5m",
"to": "now"
},
"timepicker": {},
"timezone": "",
"title": "vLLM",
"uid": "b281712d-8bff-41ef-9f3f-71ad43c05e9b",
"version": 2,
"weekStart": ""
}

View File

@ -0,0 +1,10 @@
# prometheus.yaml
global:
scrape_interval: 5s
evaluation_interval: 30s
scrape_configs:
- job_name: vllm
static_configs:
- targets:
- 'host.docker.internal:8000'

View File

@ -10,7 +10,7 @@ from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig, LoRAConfig)
from vllm.core.scheduler import Scheduler, SchedulerOutputs
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.metrics import record_metrics
from vllm.engine.metrics import StatLogger, Stats
from vllm.engine.ray_utils import RayWorkerVllm, initialize_cluster, ray
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
@ -28,8 +28,7 @@ if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
logger = init_logger(__name__)
_LOGGING_INTERVAL_SEC = 5
_LOCAL_LOGGING_INTERVAL_SEC = 5
class LLMEngine:
@ -116,12 +115,10 @@ class LLMEngine:
# Create the scheduler.
self.scheduler = Scheduler(scheduler_config, cache_config, lora_config)
# Logging.
self.last_logging_time = 0.0
# List of (timestamp, num_tokens)
self.num_prompt_tokens: List[Tuple[float, int]] = []
# List of (timestamp, num_tokens)
self.num_generation_tokens: List[Tuple[float, int]] = []
# Metric Logging.
if self.log_stats:
self.stat_logger = StatLogger(
local_interval=_LOCAL_LOGGING_INTERVAL_SEC)
def get_tokenizer_for_seq(self, sequence: Sequence):
return self.tokenizer.get_lora_tokenizer(sequence.lora_request)
@ -537,6 +534,7 @@ class LLMEngine:
def _process_sequence_group_outputs(self, seq_group: SequenceGroup,
outputs: SequenceGroupOutput) -> None:
# Process prompt logprobs
prompt_logprobs = outputs.prompt_logprobs
if prompt_logprobs is not None:
@ -732,10 +730,10 @@ class LLMEngine:
and not seq_group.prefix.computed):
seq_group.prefix.computed = True
# Log stats.
if self.log_stats:
# Log the system stats.
self._log_system_stats(scheduler_outputs.prompt_run,
scheduler_outputs.num_batched_tokens)
self.stat_logger.log(self._get_stats(scheduler_outputs))
return request_outputs
def step(self) -> List[RequestOutput]:
@ -810,81 +808,73 @@ class LLMEngine:
return self._process_model_outputs(output, scheduler_outputs)
def do_log_stats(self) -> None:
self._log_system_stats(False, 0)
"""Forced log when no requests active."""
if self.log_stats:
self.stat_logger.log(self._get_stats(scheduler_outputs=None))
def _log_system_stats(
self,
prompt_run: bool,
num_batched_tokens: int,
) -> None:
def _get_stats(self,
scheduler_outputs: Optional[SchedulerOutputs]) -> Stats:
"""Get Stats to be Logged to Prometheus."""
now = time.monotonic()
# Log the number of batched input tokens.
# KV Cache Usage in %.
num_total_gpu = self.cache_config.num_gpu_blocks
num_free_gpu = self.scheduler.block_manager.get_num_free_gpu_blocks()
gpu_cache_usage = 1.0 - (num_free_gpu / num_total_gpu)
num_total_cpu = self.cache_config.num_cpu_blocks
cpu_cache_usage = 0.
if num_total_cpu > 0:
num_free_cpu = self.scheduler.block_manager.get_num_free_cpu_blocks(
)
cpu_cache_usage = 1.0 - (num_free_cpu / num_total_cpu)
# Scheduler State
num_running = len(self.scheduler.running)
num_swapped = len(self.scheduler.swapped)
num_waiting = len(self.scheduler.waiting)
# Iteration stats if we have scheduler output.
num_prompt_tokens = 0
num_generation_tokens = 0
time_to_first_tokens = []
time_per_output_tokens = []
time_e2e_requests = []
if scheduler_outputs is not None:
prompt_run = scheduler_outputs.prompt_run
# Number of Tokens.
if prompt_run:
self.num_prompt_tokens.append((now, num_batched_tokens))
num_prompt_tokens = scheduler_outputs.num_batched_tokens
else:
self.num_generation_tokens.append((now, num_batched_tokens))
num_generation_tokens = scheduler_outputs.num_batched_tokens
should_log = now - self.last_logging_time >= _LOGGING_INTERVAL_SEC
if not should_log:
return
# Latency Timings.
time_last_iters = []
for seq_group in scheduler_outputs.scheduled_seq_groups:
# Time since last token. (n.b. updates seq_group.last_token_time)
time_last_iters.append(seq_group.get_last_latency(now))
# Time since arrival for all finished requests.
if seq_group.is_finished():
time_e2e_requests.append(now - seq_group.arrival_time)
# Discard the old stats.
self.num_prompt_tokens = [(t, n) for t, n in self.num_prompt_tokens
if now - t < _LOGGING_INTERVAL_SEC]
self.num_generation_tokens = [(t, n)
for t, n in self.num_generation_tokens
if now - t < _LOGGING_INTERVAL_SEC]
time_to_first_tokens = time_last_iters if prompt_run else []
time_per_output_tokens = [] if prompt_run else time_last_iters
if len(self.num_prompt_tokens) > 1:
total_num_tokens = sum(n for _, n in self.num_prompt_tokens[:-1])
window = now - self.num_prompt_tokens[0][0]
avg_prompt_throughput = total_num_tokens / window
else:
avg_prompt_throughput = 0.0
if len(self.num_generation_tokens) > 1:
total_num_tokens = sum(n
for _, n in self.num_generation_tokens[:-1])
window = now - self.num_generation_tokens[0][0]
avg_generation_throughput = total_num_tokens / window
else:
avg_generation_throughput = 0.0
total_num_gpu_blocks = self.cache_config.num_gpu_blocks
num_free_gpu_blocks = (
self.scheduler.block_manager.get_num_free_gpu_blocks())
num_used_gpu_blocks = total_num_gpu_blocks - num_free_gpu_blocks
gpu_cache_usage = num_used_gpu_blocks / total_num_gpu_blocks
total_num_cpu_blocks = self.cache_config.num_cpu_blocks
if total_num_cpu_blocks > 0:
num_free_cpu_blocks = (
self.scheduler.block_manager.get_num_free_cpu_blocks())
num_used_cpu_blocks = total_num_cpu_blocks - num_free_cpu_blocks
cpu_cache_usage = num_used_cpu_blocks / total_num_cpu_blocks
else:
cpu_cache_usage = 0.0
record_metrics(
avg_prompt_throughput=avg_prompt_throughput,
avg_generation_throughput=avg_generation_throughput,
scheduler_running=len(self.scheduler.running),
scheduler_swapped=len(self.scheduler.swapped),
scheduler_waiting=len(self.scheduler.waiting),
return Stats(
now=now,
num_running=num_running,
num_swapped=num_swapped,
num_waiting=num_waiting,
gpu_cache_usage=gpu_cache_usage,
cpu_cache_usage=cpu_cache_usage,
num_prompt_tokens=num_prompt_tokens,
num_generation_tokens=num_generation_tokens,
time_to_first_tokens=time_to_first_tokens,
time_per_output_tokens=time_per_output_tokens,
time_e2e_requests=time_e2e_requests,
)
logger.info("Avg prompt throughput: "
f"{avg_prompt_throughput:.1f} tokens/s, "
"Avg generation throughput: "
f"{avg_generation_throughput:.1f} tokens/s, "
f"Running: {len(self.scheduler.running)} reqs, "
f"Swapped: {len(self.scheduler.swapped)} reqs, "
f"Pending: {len(self.scheduler.waiting)} reqs, "
f"GPU KV cache usage: {gpu_cache_usage * 100:.1f}%, "
f"CPU KV cache usage: {cpu_cache_usage * 100:.1f}%")
self.last_logging_time = now
def _decode_sequence(self, seq: Sequence, prms: SamplingParams) -> None:
"""Decodes the new token for a sequence."""
(new_tokens, new_output_text, prefix_offset,

View File

@ -1,4 +1,19 @@
from aioprometheus import Gauge
from vllm.logger import init_logger
from aioprometheus import Counter, Gauge, Histogram
import time
import numpy as np
from typing import List
from dataclasses import dataclass
logger = init_logger(__name__)
labels = {}
def add_global_metrics_labels(**kwargs):
labels.update(kwargs)
# The begin-* and end* here are used by the documentation generator
# to extract the metrics definitions.
@ -9,12 +24,16 @@ gauge_avg_prompt_throughput = Gauge("vllm:avg_prompt_throughput_toks_per_s",
gauge_avg_generation_throughput = Gauge(
"vllm:avg_generation_throughput_toks_per_s",
"Average generation throughput in tokens/s.")
counter_prompt_tokens = Counter("vllm:prompt_tokens_total",
"Number of prefill tokens processed.")
counter_generation_tokens = Counter("vllm:generation_tokens_total",
"Number of generation tokens processed.")
gauge_scheduler_running = Gauge(
"vllm:num_requests_running",
"Number of requests that is currently running for inference.")
"Number of requests currently running on GPU.")
gauge_scheduler_swapped = Gauge("vllm:num_requests_swapped",
"Number requests swapped to CPU.")
"Number of requests swapped to CPU.")
gauge_scheduler_waiting = Gauge("vllm:num_requests_waiting",
"Number of requests waiting to be processed.")
@ -24,28 +43,131 @@ gauge_gpu_cache_usage = Gauge(
gauge_cpu_cache_usage = Gauge(
"vllm:cpu_cache_usage_perc",
"CPU KV-cache usage. 1 means 100 percent usage.")
histogram_time_to_first_token = Histogram(
"vllm:time_to_first_token_seconds",
"Histogram of time to first token in seconds.",
buckets=[
0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5, 0.75, 1.0,
2.5, 5.0, 7.5, 10.0
])
histogram_time_per_output_tokens = Histogram(
"vllm:time_per_output_token_seconds",
"Histogram of time per output token in seconds.",
buckets=[
0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 2.5
])
histogram_e2e_request_latency = Histogram(
"vllm:e2e_request_latency_seconds",
"Histogram of end to end request latency in seconds.",
buckets=[1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0])
# end-metrics-definitions
labels = {}
@dataclass
class Stats:
"""Created by LLMEngine for use by StatLogger."""
now: float
# System stats.
num_running: int
num_waiting: int
num_swapped: int
gpu_cache_usage: float
cpu_cache_usage: float
# Raw stats from last model iteration.
num_prompt_tokens: int
num_generation_tokens: int
time_to_first_tokens: List[float]
time_per_output_tokens: List[float]
time_e2e_requests: List[float]
def add_global_metrics_labels(**kwargs):
labels.update(kwargs)
class StatLogger:
"""StatLogger is used LLMEngine to log to Promethus and Stdout."""
def __init__(self, local_interval: float) -> None:
# Metadata for logging locally.
self.last_local_log = time.monotonic()
self.local_interval = local_interval
def record_metrics(
avg_prompt_throughput: float,
avg_generation_throughput: float,
scheduler_running: int,
scheduler_swapped: int,
scheduler_waiting: int,
gpu_cache_usage: float,
cpu_cache_usage: float,
):
gauge_avg_prompt_throughput.set(labels, avg_prompt_throughput)
gauge_avg_generation_throughput.set(labels, avg_generation_throughput)
gauge_scheduler_running.set(labels, scheduler_running)
gauge_scheduler_swapped.set(labels, scheduler_swapped)
gauge_scheduler_waiting.set(labels, scheduler_waiting)
gauge_gpu_cache_usage.set(labels, gpu_cache_usage)
gauge_cpu_cache_usage.set(labels, cpu_cache_usage)
# Tracked stats over current local logging interval.
self.num_prompt_tokens: List[int] = []
self.num_generation_tokens: List[int] = []
def _get_throughput(self, tracked_stats: List[int], now: float) -> float:
return float(np.sum(tracked_stats) / (now - self.last_local_log))
def _local_interval_elapsed(self, now: float) -> bool:
elapsed_time = now - self.last_local_log
return elapsed_time > self.local_interval
def _log_prometheus(self, stats: Stats) -> None:
# Set system stat gauges.
gauge_scheduler_running.set(labels, stats.num_running)
gauge_scheduler_swapped.set(labels, stats.num_swapped)
gauge_scheduler_waiting.set(labels, stats.num_waiting)
gauge_gpu_cache_usage.set(labels, stats.gpu_cache_usage)
gauge_cpu_cache_usage.set(labels, stats.cpu_cache_usage)
# Add to token counters.
counter_prompt_tokens.add(labels, stats.num_prompt_tokens)
counter_generation_tokens.add(labels, stats.num_generation_tokens)
# Observe request level latencies in histograms.
for ttft in stats.time_to_first_tokens:
histogram_time_to_first_token.observe(labels, ttft)
for tpot in stats.time_per_output_tokens:
histogram_time_per_output_tokens.observe(labels, tpot)
for e2e in stats.time_e2e_requests:
histogram_e2e_request_latency.observe(labels, e2e)
def _log_prometheus_interval(self, prompt_throughput: float,
generation_throughput: float) -> None:
# Logs metrics to prometheus that are computed every logging_interval.
# Support legacy gauge metrics that make throughput calculations on the vLLM side.
# Moving forward, we should use counters like counter_prompt_tokens, counter_generation_tokens
# Which log raw data and calculate summaries using rate() on the grafana/prometheus side.
# See https://github.com/vllm-project/vllm/pull/2316#discussion_r1464204666
gauge_avg_prompt_throughput.set(labels, prompt_throughput)
gauge_avg_generation_throughput.set(labels, generation_throughput)
def log(self, stats: Stats) -> None:
"""Called by LLMEngine.
Logs to prometheus and tracked stats every iteration.
Logs to Stdout every self.local_interval seconds."""
# Log to prometheus.
self._log_prometheus(stats)
# Save tracked stats for token counters.
self.num_prompt_tokens.append(stats.num_prompt_tokens)
self.num_generation_tokens.append(stats.num_generation_tokens)
# Log locally every local_interval seconds.
if self._local_interval_elapsed(stats.now):
# Compute summary metrics for tracked stats (and log them to promethus if applicable).
prompt_throughput = self._get_throughput(self.num_prompt_tokens,
now=stats.now)
generation_throughput = self._get_throughput(
self.num_generation_tokens, now=stats.now)
self._log_prometheus_interval(
prompt_throughput=prompt_throughput,
generation_throughput=generation_throughput)
# Log to stdout.
logger.info(
f"Avg prompt throughput: {prompt_throughput:.1f} tokens/s, "
f"Avg generation throughput: {generation_throughput:.1f} tokens/s, "
f"Running: {stats.num_running} reqs, "
f"Swapped: {stats.num_swapped} reqs, "
f"Pending: {stats.num_waiting} reqs, "
f"GPU KV cache usage: {stats.gpu_cache_usage * 100:.1f}%, "
f"CPU KV cache usage: {stats.cpu_cache_usage * 100:.1f}%")
# Reset tracked stats for next interval.
self.num_prompt_tokens = []
self.num_generation_tokens = []
self.last_local_log = stats.now

View File

@ -52,7 +52,6 @@ class SequenceStatus(enum.Enum):
class SequenceData:
"""Data associated with a sequence.
Args:
prompt_token_ids: The token IDs of the prompt.
@ -254,6 +253,7 @@ class SequenceGroup:
self.seqs_dict = {seq.seq_id: seq for seq in seqs}
self.sampling_params = sampling_params
self.arrival_time = arrival_time
self.last_token_time = arrival_time
self.lora_request = lora_request
self.prefix: Optional[Prefix] = prefix
self.prompt_logprobs: Optional[PromptLogprobs] = None
@ -274,6 +274,12 @@ class SequenceGroup:
def lora_int_id(self) -> int:
return self.lora_request.lora_int_id if self.lora_request else 0
def get_last_latency(self, now: float) -> float:
"""Gets last token latency for Request level timings."""
latency = now - self.last_token_time
self.last_token_time = now
return latency
def get_max_num_running_seqs(self) -> int:
"""The maximum number of sequences running in parallel in the remaining
lifetime of the request."""