[core] LLM.collective_rpc interface and RLHF example (#12084)
Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
parent
bf53e0c70b
commit
92e793d91a
@ -126,11 +126,15 @@ steps:
|
||||
- tests/distributed
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile
|
||||
- examples/offline_inference/rlhf.py
|
||||
commands:
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- python3 ../examples/offline_inference/rlhf.py
|
||||
|
||||
- label: Metrics, Tracing Test # 10min
|
||||
num_gpus: 2
|
||||
|
191
examples/offline_inference/rlhf.py
Normal file
191
examples/offline_inference/rlhf.py
Normal file
@ -0,0 +1,191 @@
|
||||
"""
|
||||
a simple demonstration of RLHF with vLLM, inspired by
|
||||
the OpenRLHF framework https://github.com/OpenRLHF/OpenRLHF .
|
||||
It follows the design that, training processes and inference processes
|
||||
are different, and they live on different GPUs.
|
||||
Training processes send prompts to inference processes to generate data,
|
||||
and also synchronize the weights of the model by broadcasting the weights
|
||||
from the training process to the inference process.
|
||||
Note that this is a simple demonstration of one training instance and one
|
||||
inference instance. In practice, there could be multiple training instances
|
||||
and multiple inference instances. For the full implementation, please refer
|
||||
to the OpenRLHF framework.
|
||||
"""
|
||||
import os
|
||||
|
||||
import ray
|
||||
import torch
|
||||
from ray.util.placement_group import placement_group
|
||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
from vllm import LLM, SamplingParams, configure_as_vllm_process
|
||||
from vllm.utils import get_ip, get_open_port
|
||||
from vllm.worker.worker import Worker
|
||||
|
||||
|
||||
def stateless_init_process_group(master_address, master_port, rank, world_size,
|
||||
device):
|
||||
"""
|
||||
vLLM provides `StatelessProcessGroup` to create a process group
|
||||
without considering the global process group in torch.distributed.
|
||||
It is recommended to create `StatelessProcessGroup`, and then initialize
|
||||
the data-plane communication (NCCL) between external (train processes)
|
||||
and vLLM workers.
|
||||
"""
|
||||
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
|
||||
from vllm.distributed.utils import StatelessProcessGroup
|
||||
pg = StatelessProcessGroup.create(host=master_address,
|
||||
port=master_port,
|
||||
rank=rank,
|
||||
world_size=world_size)
|
||||
pynccl = PyNcclCommunicator(pg, device=device)
|
||||
return pynccl
|
||||
|
||||
|
||||
class MyWorker(Worker):
|
||||
"""
|
||||
The `MyWorker` class inherits from `Worker` to provide custom functions.
|
||||
For simplicity, we define the `MyWorker` class in this self-contained
|
||||
script. Normally, we should define the `MyWorker` class in a separate
|
||||
file and pass the qualified name of the class to the `worker_cls`
|
||||
parameter.
|
||||
"""
|
||||
|
||||
def init_weight_update_group(self, master_address, master_port,
|
||||
rank_offset, world_size):
|
||||
from vllm.distributed.parallel_state import get_world_group
|
||||
rank = get_world_group().rank + rank_offset
|
||||
self.model_update_group = stateless_init_process_group(
|
||||
master_address,
|
||||
master_port,
|
||||
rank,
|
||||
world_size,
|
||||
self.device,
|
||||
)
|
||||
|
||||
def update_weight(self, name, dtype, shape):
|
||||
weight = torch.empty(shape, dtype=dtype, device="cuda")
|
||||
self.model_update_group.broadcast(weight,
|
||||
src=0,
|
||||
stream=torch.cuda.current_stream())
|
||||
|
||||
self.model_runner.model.load_weights(weights=[(name, weight)])
|
||||
|
||||
del weight
|
||||
|
||||
def check_weights_changed(self):
|
||||
"""
|
||||
Check if the weights are updated to 0.
|
||||
"""
|
||||
weights_updated = True
|
||||
for name, p in self.model_runner.model.named_parameters():
|
||||
weights_updated = weights_updated and torch.allclose(
|
||||
p, torch.zeros_like(p))
|
||||
return weights_updated
|
||||
|
||||
|
||||
class MyLLM(LLM):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
# a hack to make the script work.
|
||||
# stop ray from manipulating CUDA_VISIBLE_DEVICES
|
||||
# at the top-level
|
||||
del os.environ["CUDA_VISIBLE_DEVICES"]
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
"""
|
||||
Start the training process, here we use huggingface transformers
|
||||
as an example to hold a model on GPU 0.
|
||||
|
||||
It is important for all the processes outside of vLLM to call
|
||||
`configure_as_vllm_process` to set some common environment variables
|
||||
the same as vLLM workers.
|
||||
"""
|
||||
configure_as_vllm_process()
|
||||
|
||||
train_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
|
||||
train_model.to("cuda:0")
|
||||
"""
|
||||
Start the inference process, here we use vLLM to hold a model on GPU 1 and
|
||||
GPU 2. For the details on how to use ray, please refer to the ray
|
||||
documentation https://docs.ray.io/en/latest/ .
|
||||
"""
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2"
|
||||
ray.init()
|
||||
|
||||
pg_inference = placement_group([{"GPU": 1, "CPU": 0}] * 2)
|
||||
ray.get(pg_inference.ready())
|
||||
scheduling_inference = PlacementGroupSchedulingStrategy(
|
||||
placement_group=pg_inference,
|
||||
placement_group_capture_child_tasks=True,
|
||||
placement_group_bundle_index=0,
|
||||
)
|
||||
"""
|
||||
launch the vLLM inference engine.
|
||||
here we use `enforce_eager` to reduce the start time.
|
||||
"""
|
||||
llm = ray.remote(
|
||||
num_cpus=0,
|
||||
num_gpus=0,
|
||||
scheduling_strategy=scheduling_inference,
|
||||
)(MyLLM).remote(
|
||||
model="facebook/opt-125m",
|
||||
enforce_eager=True,
|
||||
worker_cls=MyWorker,
|
||||
tensor_parallel_size=2,
|
||||
distributed_executor_backend="ray",
|
||||
)
|
||||
|
||||
# Generate texts from the prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
sampling_params = SamplingParams(temperature=0)
|
||||
|
||||
outputs = ray.get(llm.generate.remote(prompts, sampling_params))
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, "
|
||||
f"Generated text: {generated_text!r}")
|
||||
|
||||
# set up the communication between the training process
|
||||
# and the inference engine.
|
||||
master_address = get_ip()
|
||||
master_port = get_open_port()
|
||||
|
||||
handle = llm.collective_rpc.remote("init_weight_update_group",
|
||||
args=(master_address, master_port, 1, 3))
|
||||
model_update_group = stateless_init_process_group(master_address, master_port,
|
||||
0, 3, torch.device("cuda:0"))
|
||||
ray.get(handle)
|
||||
|
||||
# simulate training, modify the weights of the model.
|
||||
for name, p in train_model.named_parameters():
|
||||
p.data.zero_()
|
||||
|
||||
# sync weight from the training process to the inference engine.
|
||||
for name, p in train_model.named_parameters():
|
||||
handle = llm.collective_rpc.remote("update_weight",
|
||||
args=(name, p.dtype, p.shape))
|
||||
model_update_group.broadcast(p, src=0, stream=torch.cuda.current_stream())
|
||||
ray.get(handle)
|
||||
|
||||
# check if the weights are updated.
|
||||
assert all(ray.get(llm.collective_rpc.remote("check_weights_changed")))
|
||||
|
||||
# use the updated model to generate texts, they will be nonsense
|
||||
# because the weights are all zeros.
|
||||
outputs_updated = ray.get(llm.generate.remote(prompts, sampling_params))
|
||||
for output in outputs_updated:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, "
|
||||
f"Generated text: {generated_text!r}")
|
@ -17,6 +17,44 @@ from vllm.sampling_params import SamplingParams
|
||||
|
||||
from .version import __version__, __version_tuple__
|
||||
|
||||
|
||||
def configure_as_vllm_process():
|
||||
"""
|
||||
set some common config/environment variables that should be set
|
||||
for all processes created by vllm and all processes
|
||||
that interact with vllm workers.
|
||||
"""
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
# see https://github.com/NVIDIA/nccl/issues/1234
|
||||
os.environ['NCCL_CUMEM_ENABLE'] = '0'
|
||||
|
||||
# see https://github.com/vllm-project/vllm/issues/10480
|
||||
os.environ['TORCHINDUCTOR_COMPILE_THREADS'] = '1'
|
||||
# see https://github.com/vllm-project/vllm/issues/10619
|
||||
torch._inductor.config.compile_threads = 1
|
||||
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
if current_platform.is_xpu():
|
||||
# see https://github.com/pytorch/pytorch/blob/43c5f59/torch/_dynamo/config.py#L158
|
||||
torch._dynamo.config.disable = True
|
||||
elif current_platform.is_hpu():
|
||||
# NOTE(kzawora): PT HPU lazy backend (PT_HPU_LAZY_MODE = 1)
|
||||
# does not support torch.compile
|
||||
# Eager backend (PT_HPU_LAZY_MODE = 0) must be selected for
|
||||
# torch.compile support
|
||||
is_lazy = os.environ.get('PT_HPU_LAZY_MODE', '1') == '1'
|
||||
if is_lazy:
|
||||
torch._dynamo.config.disable = True
|
||||
# NOTE(kzawora) multi-HPU inference with HPUGraphs (lazy-only)
|
||||
# requires enabling lazy collectives
|
||||
# see https://docs.habana.ai/en/latest/PyTorch/Inference_on_PyTorch/Inference_Using_HPU_Graphs.html # noqa: E501
|
||||
os.environ['PT_HPU_ENABLE_LAZY_COLLECTIVES'] = 'true'
|
||||
|
||||
|
||||
__all__ = [
|
||||
"__version__",
|
||||
"__version_tuple__",
|
||||
@ -42,4 +80,5 @@ __all__ = [
|
||||
"AsyncEngineArgs",
|
||||
"initialize_ray_cluster",
|
||||
"PoolingParams",
|
||||
"configure_as_vllm_process",
|
||||
]
|
||||
|
@ -4,6 +4,7 @@ from contextlib import contextmanager
|
||||
from typing import (Any, ClassVar, Dict, List, Optional, Sequence, Tuple, Type,
|
||||
Union, cast, overload)
|
||||
|
||||
import cloudpickle
|
||||
from tqdm import tqdm
|
||||
from typing_extensions import deprecated
|
||||
|
||||
@ -186,6 +187,13 @@ class LLM:
|
||||
if "disable_log_stats" not in kwargs:
|
||||
kwargs["disable_log_stats"] = True
|
||||
|
||||
if "worker_cls" in kwargs:
|
||||
worker_cls = kwargs["worker_cls"]
|
||||
# if the worker_cls is not qualified string name,
|
||||
# we serialize it using cloudpickle to avoid pickling issues
|
||||
if isinstance(worker_cls, type):
|
||||
kwargs["worker_cls"] = cloudpickle.dumps(worker_cls)
|
||||
|
||||
if compilation_config is not None:
|
||||
if isinstance(compilation_config, (int, dict)):
|
||||
compilation_config_instance = CompilationConfig.from_cli(
|
||||
@ -455,6 +463,23 @@ class LLM:
|
||||
outputs = self._run_engine(use_tqdm=use_tqdm)
|
||||
return self.engine_class.validate_outputs(outputs, RequestOutput)
|
||||
|
||||
def collective_rpc(self,
|
||||
method: str,
|
||||
timeout: Optional[float] = None,
|
||||
args: Tuple = (),
|
||||
kwargs: Optional[Dict] = None) -> List[Any]:
|
||||
"""
|
||||
Run a method on all workers, with homogeneous arguments.
|
||||
The main extension point for the LLM entrypoint.
|
||||
Users can provide custom worker class through `worker_cls`
|
||||
argument, and implement new methods in the worker class.
|
||||
Then, users can call the new methods through this API.
|
||||
It is recommended to use this API to only pass control messages,
|
||||
and set up data-plane communication to pass data.
|
||||
"""
|
||||
return self.llm_engine.model_executor.collective_rpc(
|
||||
method, timeout, args, kwargs)
|
||||
|
||||
def beam_search(
|
||||
self,
|
||||
prompts: List[Union[TokensPrompt, TextPrompt]],
|
||||
|
@ -1,9 +1,6 @@
|
||||
import logging
|
||||
import os
|
||||
from typing import Callable, Dict
|
||||
|
||||
import torch
|
||||
|
||||
import vllm.envs as envs
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -50,34 +47,6 @@ def load_general_plugins():
|
||||
processes. They should be designed in a way that they can be loaded
|
||||
multiple times without causing issues.
|
||||
"""
|
||||
|
||||
# all processes created by vllm will load plugins,
|
||||
# and here we can inject some common environment variables
|
||||
# for all processes.
|
||||
|
||||
# see https://github.com/vllm-project/vllm/issues/10480
|
||||
os.environ['TORCHINDUCTOR_COMPILE_THREADS'] = '1'
|
||||
# see https://github.com/vllm-project/vllm/issues/10619
|
||||
torch._inductor.config.compile_threads = 1
|
||||
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
if current_platform.is_xpu():
|
||||
# see https://github.com/pytorch/pytorch/blob/43c5f59/torch/_dynamo/config.py#L158
|
||||
torch._dynamo.config.disable = True
|
||||
if current_platform.is_hpu():
|
||||
# NOTE(kzawora): PT HPU lazy backend (PT_HPU_LAZY_MODE = 1)
|
||||
# does not support torch.compile
|
||||
# Eager backend (PT_HPU_LAZY_MODE = 0) must be selected for
|
||||
# torch.compile support
|
||||
is_lazy = os.environ.get('PT_HPU_LAZY_MODE', '1') == '1'
|
||||
if is_lazy:
|
||||
torch._dynamo.config.disable = True
|
||||
# NOTE(kzawora) multi-HPU inference with HPUGraphs (lazy-only)
|
||||
# requires enabling lazy collectives
|
||||
# see https://docs.habana.ai/en/latest/PyTorch/Inference_on_PyTorch/Inference_Using_HPU_Graphs.html # noqa: E501
|
||||
os.environ['PT_HPU_ENABLE_LAZY_COLLECTIVES'] = 'true'
|
||||
|
||||
global plugins_loaded
|
||||
if plugins_loaded:
|
||||
return
|
||||
|
@ -4,6 +4,7 @@ import time
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
|
||||
|
||||
import cloudpickle
|
||||
import torch
|
||||
|
||||
from vllm.config import ObservabilityConfig, VllmConfig
|
||||
@ -521,14 +522,20 @@ class WorkerWrapperBase:
|
||||
kwargs = all_kwargs[self.rpc_rank]
|
||||
enable_trace_function_call_for_thread(self.vllm_config)
|
||||
|
||||
# see https://github.com/NVIDIA/nccl/issues/1234
|
||||
os.environ['NCCL_CUMEM_ENABLE'] = '0'
|
||||
from vllm import configure_as_vllm_process
|
||||
configure_as_vllm_process()
|
||||
|
||||
from vllm.plugins import load_general_plugins
|
||||
load_general_plugins()
|
||||
|
||||
worker_class = resolve_obj_by_qualname(
|
||||
self.vllm_config.parallel_config.worker_cls)
|
||||
if isinstance(self.vllm_config.parallel_config.worker_cls, str):
|
||||
worker_class = resolve_obj_by_qualname(
|
||||
self.vllm_config.parallel_config.worker_cls)
|
||||
else:
|
||||
assert isinstance(self.vllm_config.parallel_config.worker_cls,
|
||||
bytes)
|
||||
worker_class = cloudpickle.loads(
|
||||
self.vllm_config.parallel_config.worker_cls)
|
||||
self.worker = worker_class(**kwargs)
|
||||
assert self.worker is not None
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user