[ CI/Build ] Added E2E Test For Compressed Tensors (#5839)

Co-authored-by: Michael Goin <michael@neuralmagic.com>
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
This commit is contained in:
Robert Shaw 2024-06-29 09:12:58 -04:00 committed by GitHub
parent f7dac83d95
commit 8dbfcd35bf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 57 additions and 1 deletions

View File

@ -14,6 +14,8 @@ peft
requests
ray
sentence-transformers # required for embedding
sparseml==1.8.0 # required for compressed-tensors
compressed-tensors==0.4.0 # required for compressed-tensors
# Benchmarking
aiohttp

View File

@ -176,6 +176,7 @@ class HfRunner:
model_kwargs: Optional[Dict[str, Any]] = None,
is_embedding_model: bool = False,
is_vision_model: bool = False,
is_sparseml_model: bool = False,
) -> None:
assert dtype in _STR_DTYPE_TO_TORCH_DTYPE
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
@ -193,6 +194,9 @@ class HfRunner:
else:
if is_vision_model:
auto_cls = AutoModelForVision2Seq
elif is_sparseml_model:
from sparseml.transformers import SparseAutoModelForCausalLM
auto_cls = SparseAutoModelForCausalLM
else:
auto_cls = AutoModelForCausalLM

View File

@ -0,0 +1,49 @@
"""Compares vllm vs sparseml for compressed-tensors
Note: vllm and sparseml do not have bitwise correctness,
so in this test, we just confirm that the top selected
tokens of the are in the top 5 selections of each other.
"""
import pytest
from tests.quantization.utils import is_quant_method_supported
from .utils import check_logprobs_close
MODELS = [
"nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Per-Token-Test",
]
MAX_TOKENS = 32
NUM_LOGPROBS = 5
@pytest.mark.skipif(
not is_quant_method_supported("compressed-tensors"),
reason="compressed-tensors is not supported on this machine type.")
@pytest.mark.parametrize("model_name", MODELS)
def test_models(
vllm_runner,
hf_runner,
example_prompts,
model_name,
) -> None:
# Run sparseml.
with hf_runner(model_name=model_name,
is_sparseml_model=True) as sparseml_model:
sparseml_outputs = sparseml_model.generate_greedy_logprobs_limit(
example_prompts, MAX_TOKENS, NUM_LOGPROBS)
# Run vllm.
with vllm_runner(model_name=model_name) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, MAX_TOKENS, NUM_LOGPROBS)
check_logprobs_close(
outputs_0_lst=sparseml_outputs,
outputs_1_lst=vllm_outputs,
name_0="sparseml",
name_1="vllm",
)

View File

@ -34,7 +34,8 @@ class CompressedTensorsConfig(QuantizationConfig):
return [torch.float16, torch.bfloat16]
# Need to figure it out
def get_min_capability(self) -> int:
@classmethod
def get_min_capability(cls) -> int:
return 60
def get_name(self) -> str: