Possible fix for conflict between Automated Prefix Caching (#2762) and multi-LoRA support (#1804) (#3263)

This commit is contained in:
jacobthebanana 2024-03-07 18:03:22 -05:00 committed by GitHub
parent 385da2dae2
commit 8cbba4622c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 31 additions and 14 deletions

View File

@ -2,8 +2,11 @@
Run `pytest tests/test_cache_block_hashing.py`.
"""
from typing import List, Optional
import pytest
from vllm.lora.request import LoRARequest
from vllm.transformers_utils.tokenizer import TokenizerGroup
from vllm.sequence import Sequence
@ -36,7 +39,10 @@ def flatten_2d(li):
@pytest.mark.parametrize("model", ["facebook/opt-125m"])
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("max_num_seqs", [256])
def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int):
@pytest.mark.parametrize("concurrent_lora_int_ids",
[[None], [1], [None, 1], [None, 1, 2], [1, 2]])
def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int,
concurrent_lora_int_ids: List[Optional[int]]):
tokenizer = TokenizerGroup(
tokenizer_id="facebook/opt-125m",
@ -48,20 +54,30 @@ def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int):
hashes = []
for prefix in prefixes:
hashes.append([])
prompts = [prefix + prompt for prompt in sample_prompts]
seq_id = 0
for prompt in prompts:
hashes[-1].append([])
prompt_token_ids = tokenizer.encode(prompt)
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
tokenizer.tokenizer.eos_token_id)
for lora_int_id in concurrent_lora_int_ids:
lora_request = None
num_blocks = len(prompt_token_ids) // block_size
for idx in range(num_blocks):
hashes[-1][-1].append(seq.hash_of_block(idx))
if lora_int_id is not None:
lora_request = LoRARequest(
f"example_lora_{lora_int_id}",
lora_int_id,
f"example/path/to/lora_{lora_int_id}",
)
seq_id += 1
hashes.append([])
prompts = [prefix + prompt for prompt in sample_prompts]
seq_id = 0
for prompt in prompts:
hashes[-1].append([])
prompt_token_ids = tokenizer.encode(prompt)
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
tokenizer.tokenizer.eos_token_id, lora_request)
num_blocks = len(prompt_token_ids) // block_size
for idx in range(num_blocks):
hashes[-1][-1].append(seq.hash_of_block(idx))
seq_id += 1
# Check that hashes made with two prefixes with different first blocks are
# different everywhere.

View File

@ -175,7 +175,8 @@ class Sequence:
# TODO: The current hashing function is O(L^2). We should optimize
# this in the future.
num_tokens = self.num_hashed_tokens_of_block(logical_idx)
return hash(tuple(self.data.get_token_ids()[0:num_tokens]))
return hash(
(tuple(self.data.get_token_ids()[0:num_tokens]), self.lora_int_id))
def num_hashed_tokens_of_block(self, logical_idx: int):
return logical_idx * self.block_size + self.block_size