[Model] support minicpm3 (#8297)
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
1ef0d2efd0
commit
8a0cf1ddc3
@ -22,7 +22,7 @@ docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py"
|
||||
|
||||
# Run basic model test
|
||||
docker exec cpu-test bash -c "
|
||||
pip install pytest matplotlib einops transformers_stream_generator
|
||||
pip install pytest matplotlib einops transformers_stream_generator datamodel_code_generator
|
||||
pytest -v -s tests/models/decoder_only/language \
|
||||
--ignore=tests/models/test_fp8.py \
|
||||
--ignore=tests/models/decoder_only/language/test_jamba.py \
|
||||
|
@ -107,6 +107,10 @@ Decoder-only Language Models
|
||||
- MiniCPM
|
||||
- :code:`openbmb/MiniCPM-2B-sft-bf16`, :code:`openbmb/MiniCPM-2B-dpo-bf16`, etc.
|
||||
-
|
||||
* - :code:`MiniCPM3ForCausalLM`
|
||||
- MiniCPM3
|
||||
- :code:`openbmb/MiniCPM3-4B`, etc.
|
||||
-
|
||||
* - :code:`MistralForCausalLM`
|
||||
- Mistral, Mistral-Instruct
|
||||
- :code:`mistralai/Mistral-7B-v0.1`, :code:`mistralai/Mistral-7B-Instruct-v0.1`, etc.
|
||||
|
@ -21,6 +21,7 @@ compressed-tensors==0.4.0 # required for compressed-tensors
|
||||
timm # required for internvl test
|
||||
transformers_stream_generator # required for qwen-vl test
|
||||
matplotlib # required for qwen-vl test
|
||||
datamodel_code_generator # required for minicpm3 test
|
||||
|
||||
# TODO: Add this after fully implementing llava(mantis)
|
||||
# git+https://github.com/TIGER-AI-Lab/Mantis.git # required for llava(mantis) test
|
||||
|
@ -5,7 +5,8 @@ This tests bigger models and use half precision.
|
||||
Run `pytest tests/models/test_big_models.py`.
|
||||
"""
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from ...utils import check_outputs_equal
|
||||
|
||||
@ -19,10 +20,12 @@ MODELS = [
|
||||
# "Qwen/Qwen1.5-0.5B" # Broken,
|
||||
]
|
||||
|
||||
if not current_platform.is_cpu():
|
||||
# MiniCPM requires fused_moe which is not supported by CPU
|
||||
MODELS.append("openbmb/MiniCPM3-4B")
|
||||
|
||||
#TODO: remove this after CPU float16 support ready
|
||||
target_dtype = "float"
|
||||
if torch.cuda.is_available():
|
||||
target_dtype = "half"
|
||||
target_dtype = "float" if current_platform.is_cpu() else "half"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@ -39,7 +42,7 @@ def test_models(
|
||||
with hf_runner(model, dtype=dtype) as hf_model:
|
||||
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
||||
|
||||
with vllm_runner(model, dtype=dtype) as vllm_model:
|
||||
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model:
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
||||
|
||||
check_outputs_equal(
|
||||
@ -57,7 +60,7 @@ def test_model_print(
|
||||
model: str,
|
||||
dtype: str,
|
||||
) -> None:
|
||||
with vllm_runner(model, dtype=dtype) as vllm_model:
|
||||
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model:
|
||||
# This test is for verifying whether the model's extra_repr
|
||||
# can be printed correctly.
|
||||
print(vllm_model.model.llm_engine.model_executor.driver_worker.
|
||||
|
@ -43,6 +43,7 @@ _GENERATION_MODELS = {
|
||||
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
|
||||
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
|
||||
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
|
||||
"MiniCPM3ForCausalLM": ("minicpm3", "MiniCPM3ForCausalLM"),
|
||||
"NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"),
|
||||
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
|
||||
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
|
||||
|
@ -270,38 +270,47 @@ class MiniCPMDecoderLayer(nn.Module):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.cache_config = cache_config
|
||||
self.quant_config = quant_config
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.rope_theta = getattr(config, "rope_theta", 10000)
|
||||
self.rope_scaling = getattr(config, "rope_scaling", None)
|
||||
self.max_position_embeddings = getattr(config,
|
||||
"max_position_embeddings", 8192)
|
||||
self._init_attn_block()
|
||||
self._init_ffn_block()
|
||||
|
||||
def _init_attn_block(self):
|
||||
self.input_layernorm = RMSNorm(self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps)
|
||||
self.self_attn = MiniCPMAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
num_heads=self.config.num_attention_heads,
|
||||
num_kv_heads=self.config.num_key_value_heads,
|
||||
rope_theta=self.rope_theta,
|
||||
rope_scaling=self.rope_scaling,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
cache_config=self.cache_config,
|
||||
quant_config=self.quant_config,
|
||||
)
|
||||
|
||||
def _init_ffn_block(self):
|
||||
self.post_attention_layernorm = RMSNorm(self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps)
|
||||
self.num_experts = getattr(self.config, "num_experts", 0)
|
||||
if self.num_experts == 0:
|
||||
self.mlp = MiniCPMMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
intermediate_size=self.config.intermediate_size,
|
||||
hidden_act=self.config.hidden_act,
|
||||
quant_config=self.quant_config,
|
||||
)
|
||||
else:
|
||||
self.mlp = MiniCPMMoE(num_experts=config.num_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.mlp = MiniCPMMoE(
|
||||
num_experts=self.config.num_experts,
|
||||
top_k=self.config.num_experts_per_tok,
|
||||
hidden_size=self.config.hidden_size,
|
||||
intermediate_size=self.config.intermediate_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -344,6 +353,8 @@ class MiniCPMModel(nn.Module):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.cache_config = cache_config
|
||||
self.quant_config = quant_config
|
||||
self.padding_idx = config.pad_token_id
|
||||
lora_vocab = (lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0
|
||||
@ -354,12 +365,16 @@ class MiniCPMModel(nn.Module):
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
MiniCPMDecoderLayer(config, cache_config, quant_config)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self._init_layers()
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def _init_layers(self):
|
||||
self.layers = nn.ModuleList([
|
||||
MiniCPMDecoderLayer(self.config, self.cache_config,
|
||||
self.quant_config)
|
||||
for _ in range(self.config.num_hidden_layers)
|
||||
])
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
embedding = self.embed_tokens(input_ids)
|
||||
return embedding * self.config.scale_emb
|
||||
@ -431,13 +446,11 @@ class MiniCPMForCausalLM(nn.Module, SupportsLoRA):
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
self.cache_config = cache_config
|
||||
self.quant_config = quant_config
|
||||
|
||||
self.num_experts = getattr(self.config, "num_experts", 0)
|
||||
self.quant_config = quant_config
|
||||
self.model = MiniCPMModel(config,
|
||||
cache_config,
|
||||
quant_config,
|
||||
lora_config=lora_config)
|
||||
self._init_model()
|
||||
unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
@ -458,6 +471,12 @@ class MiniCPMForCausalLM(nn.Module, SupportsLoRA):
|
||||
config.vocab_size)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def _init_model(self):
|
||||
self.model = MiniCPMModel(config=self.config,
|
||||
cache_config=self.cache_config,
|
||||
quant_config=self.quant_config,
|
||||
lora_config=self.lora_config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
|
216
vllm/model_executor/models/minicpm3.py
Normal file
216
vllm/model_executor/models/minicpm3.py
Normal file
@ -0,0 +1,216 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2024 The ModelBest team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only MiniCPM3 model compatible with HuggingFace weights."""
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.models.minicpm import (MiniCPMDecoderLayer,
|
||||
MiniCPMForCausalLM,
|
||||
MiniCPMModel)
|
||||
|
||||
|
||||
class MiniCPM3Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
qk_nope_head_dim: int,
|
||||
qk_rope_head_dim: int,
|
||||
v_head_dim: int,
|
||||
q_lora_rank: int,
|
||||
kv_lora_rank: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.num_heads = num_heads
|
||||
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
assert self.num_heads % tp_size == 0
|
||||
self.num_local_heads = num_heads // tp_size
|
||||
|
||||
self.scaling = self.qk_head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.q_a_proj = ReplicatedLinear(self.hidden_size,
|
||||
self.q_lora_rank,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
|
||||
self.q_b_proj = ColumnParallelLinear(q_lora_rank,
|
||||
self.num_heads * self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
|
||||
self.kv_a_proj_with_mqa = ReplicatedLinear(self.hidden_size,
|
||||
self.kv_lora_rank +
|
||||
self.qk_rope_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
|
||||
eps=config.rms_norm_eps)
|
||||
self.kv_b_proj = ColumnParallelLinear(
|
||||
self.kv_lora_rank,
|
||||
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
# O projection.
|
||||
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.qk_rope_head_dim,
|
||||
rotary_dim=self.qk_rope_head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = Attention(self.num_local_heads,
|
||||
self.qk_head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_local_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
q, _ = self.q_a_proj(hidden_states)
|
||||
q = self.q_a_layernorm(q)
|
||||
q, _ = self.q_b_proj(q)
|
||||
q = q.view(-1, self.num_local_heads, self.qk_head_dim)
|
||||
_, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
|
||||
dim=-1)
|
||||
latent_cache, _ = self.kv_a_proj_with_mqa(hidden_states)
|
||||
kv_a, _ = latent_cache.split(
|
||||
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
||||
latent_cache = latent_cache.unsqueeze(1)
|
||||
kv_a = self.kv_a_layernorm(kv_a.contiguous())
|
||||
kv, _ = self.kv_b_proj(kv_a)
|
||||
kv = kv.view(-1, self.num_local_heads,
|
||||
self.qk_nope_head_dim + self.v_head_dim)
|
||||
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
||||
|
||||
k_pe = latent_cache[:, :, self.kv_lora_rank:]
|
||||
|
||||
q_pe, k_pe = self.rotary_emb(
|
||||
positions,
|
||||
q_pe.reshape(-1, self.num_local_heads * self.qk_rope_head_dim),
|
||||
k_pe.reshape(-1, self.qk_rope_head_dim))
|
||||
q_pe = q_pe.view(-1, self.num_local_heads, self.qk_rope_head_dim)
|
||||
k_pe = k_pe.view(-1, 1, self.qk_rope_head_dim)
|
||||
|
||||
q[..., self.qk_nope_head_dim:] = q_pe
|
||||
|
||||
k = torch.empty_like(q)
|
||||
|
||||
k[..., :self.qk_nope_head_dim] = k_nope
|
||||
k[..., self.qk_nope_head_dim:] = k_pe
|
||||
|
||||
q = q.reshape(-1, self.num_local_heads * self.qk_head_dim)
|
||||
k = k.view(-1, self.num_local_heads * self.qk_head_dim)
|
||||
v = torch.nn.functional.pad(
|
||||
v, [0, self.qk_head_dim - self.v_head_dim],
|
||||
value=0).view(-1, self.num_local_heads * self.qk_head_dim)
|
||||
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
attn_output = attn_output.view(
|
||||
-1, self.num_local_heads,
|
||||
self.qk_head_dim)[..., :self.v_head_dim].reshape(
|
||||
-1, self.num_local_heads * self.v_head_dim)
|
||||
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class MiniCPM3DecoderLayer(MiniCPMDecoderLayer):
|
||||
|
||||
def _init_attn_block(self):
|
||||
self.input_layernorm = RMSNorm(self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps)
|
||||
self.self_attn = MiniCPM3Attention(
|
||||
config=self.config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=self.config.num_attention_heads,
|
||||
qk_nope_head_dim=self.config.qk_nope_head_dim,
|
||||
qk_rope_head_dim=self.config.qk_rope_head_dim,
|
||||
v_head_dim=self.config.v_head_dim,
|
||||
q_lora_rank=self.config.q_lora_rank,
|
||||
kv_lora_rank=self.config.kv_lora_rank,
|
||||
rope_theta=self.rope_theta,
|
||||
rope_scaling=self.rope_scaling,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
cache_config=self.cache_config,
|
||||
quant_config=self.quant_config,
|
||||
)
|
||||
|
||||
|
||||
class MiniCPM3Model(MiniCPMModel):
|
||||
|
||||
def _init_layers(self):
|
||||
self.layers = nn.ModuleList([
|
||||
MiniCPM3DecoderLayer(self.config, self.cache_config,
|
||||
self.quant_config)
|
||||
for _ in range(self.config.num_hidden_layers)
|
||||
])
|
||||
|
||||
|
||||
class MiniCPM3ForCausalLM(MiniCPMForCausalLM):
|
||||
|
||||
def _init_model(self):
|
||||
self.model = MiniCPM3Model(config=self.config,
|
||||
cache_config=self.cache_config,
|
||||
quant_config=self.quant_config,
|
||||
lora_config=self.lora_config)
|
Loading…
x
Reference in New Issue
Block a user