[Kernel] Tuned FP8 Kernels for Ada Lovelace (#6677)

Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
This commit is contained in:
Varun Sundar Rabindranath 2024-07-29 11:42:35 -04:00 committed by GitHub
parent 7cbd9ec7a9
commit 766435e660
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 877 additions and 490 deletions

View File

@ -13,7 +13,7 @@ from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops from vllm import _custom_ops as ops
from vllm.utils import FlexibleArgumentParser from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())[1:] DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512] DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1] DEFAULT_TP_SIZES = [1]

View File

@ -1,470 +1,16 @@
#include <stddef.h> #include <stddef.h>
#include <torch/all.h> #include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
// clang-format will break include orders
// clang-format off
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/cutlass.h" #include "cutlass/cutlass.h"
#include "cutlass/gemm_coord.h"
#include "cutlass/arch/mma_sm75.h"
#include "cutlass/arch/arch.h"
#include "cutlass/arch/mma.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp" #include "scaled_mm_c2x.cuh"
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h" #include "scaled_mm_c2x_sm80_dispatch.cuh"
#include "scaled_mm_c2x_sm89_dispatch.cuh"
#include "broadcast_load_epilogue_c2x.hpp"
#include "common.hpp"
// clang-format on
using namespace cute;
/* /*
This file defines quantized GEMM operations using the CUTLASS 2.x API, for This file defines quantized GEMM operations using the CUTLASS 2.x API, for
NVIDIA GPUs with SM versions prior to sm90 (Hopper). NVIDIA GPUs with SM versions prior to sm90 (Hopper).
Epilogue functions can be defined to post-process the output before it is
written to GPU memory.
Epilogues must contain a public type named EVTCompute of type Sm80EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/ */
namespace {
// Wrappers for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm75_to_sm80 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 750 && __CUDA_ARCH__ < 800
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
template <typename Kernel>
struct enable_sm80_to_sm89 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800 && __CUDA_ARCH__ < 890
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
template <typename Kernel>
struct enable_sm89_to_sm90 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 890 && __CUDA_ARCH__ < 900
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
/*
* This class provides the common ScaleA and ScaleB descriptors for the
* ScaledEpilogue and ScaledEpilogueBias classes.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch;
using ScaleA = cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast<
OutputTileThreadMap, float, Stride<Int<1>, Int<0>, Int<0>>>;
using ScaleB = cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast<
OutputTileThreadMap, float, Stride<Int<0>, Int<1>, Int<0>>>;
};
/*
This epilogue function defines a quantized GEMM operation similar to
torch._scaled_mm.
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::ScaleA;
using ScaleB = typename SUPER::ScaleB;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA, EVTCompute0>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
using ScaleAArgs = typename ScaleA::Arguments;
using ScaleBArgs = typename ScaleB::Arguments;
ScaleBArgs b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
ScaleAArgs a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
typename EVTCompute0::Arguments evt0_compute_args{b_args};
typename EVTCompute::Arguments evt_compute_args{a_args, evt0_compute_args};
return evt_compute_args;
}
};
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBias
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::ScaleA;
using ScaleB = typename SUPER::ScaleB;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using Bias = cutlass::epilogue::threadblock::VisitorRowBroadcast<
OutputTileThreadMap, ElementD, Stride<Int<0>, Int<1>, Int<0>>>;
public:
using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA,
EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
using ScaleAArgs = typename ScaleA::Arguments;
using ScaleBArgs = typename ScaleB::Arguments;
using BiasArgs = typename Bias::Arguments;
ScaleBArgs b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
ScaleAArgs a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
BiasArgs bias_args{static_cast<ElementD*>(bias.data_ptr()), {}};
typename EVTCompute0::Arguments evt0_compute_args{b_args};
typename EVTCompute::Arguments evt_compute_args{a_args, evt0_compute_args,
bias_args};
return evt_compute_args;
}
};
template <typename Arch, template <typename> typename ArchGuard,
typename ElementAB_, typename ElementD_,
template <typename, typename> typename Epilogue_, typename TileShape,
typename WarpShape, typename InstructionShape, int32_t MainLoopStages>
struct cutlass_2x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using Operator =
typename std::conditional<std::is_same_v<ElementAB, int8_t>,
cutlass::arch::OpMultiplyAddSaturate,
cutlass::arch::OpMultiplyAdd>::type;
using OutputTileThreadMap =
cutlass::epilogue::threadblock::OutputTileThreadLayout<
TileShape, WarpShape, float, 4, 1 /* epilogue stages */
>;
using Epilogue = Epilogue_<ElementD, OutputTileThreadMap>;
using EVTCompute = typename Epilogue::EVTCompute;
using D = cutlass::epilogue::threadblock::VisitorAuxStore<
OutputTileThreadMap, ElementD, cutlass::FloatRoundStyle::round_to_nearest,
Stride<int64_t, Int<1>, Int<0>>>;
using EVTD = cutlass::epilogue::threadblock::Sm80EVT<D, EVTCompute>;
// clang-format off
using RowMajor = typename cutlass::layout::RowMajor;
using ColumnMajor = typename cutlass::layout::ColumnMajor;
using KernelType =
ArchGuard<typename cutlass::gemm::kernel::DefaultGemmWithVisitor<
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
float, cutlass::layout::RowMajor, 4,
ElementAcc, float, cutlass::arch::OpClassTensorOp,
Arch,
TileShape, WarpShape, InstructionShape,
EVTD,
cutlass::gemm::threadblock::ThreadblockSwizzleStreamK,
MainLoopStages, Operator,
1 /* epilogue stages */
>::GemmKernel>;
// clang-format on
using Op = cutlass::gemm::device::GemmUniversalAdapter<KernelType>;
};
template <typename Gemm, typename... EpilogueArgs>
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0);
int32_t n = b.size(1);
int32_t k = a.size(1);
cutlass::gemm::GemmCoord problem_size{m, n, k};
int64_t lda = a.stride(0);
int64_t ldb = b.stride(1);
int64_t ldc = out.stride(0);
using StrideC = Stride<int64_t, Int<1>, Int<0>>;
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
auto a_ptr = static_cast<ElementAB const*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB const*>(b.data_ptr());
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename Gemm::D::Arguments d_args{c_ptr, c_stride};
using Epilogue = typename Gemm::Epilogue;
auto evt_args =
Epilogue::prepare_args(std::forward<EpilogueArgs>(epilogue_params)...);
typename Gemm::EVTD::Arguments epilogue_args{
evt_args,
d_args,
};
typename Gemm::Op::Arguments args{
cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel, // universal mode
problem_size, // problem size
1, // batch count
epilogue_args,
a_ptr,
b_ptr,
nullptr,
nullptr,
0,
0,
0,
0,
lda,
ldb,
ldc,
ldc};
// Launch the CUTLASS GEMM kernel.
typename Gemm::Op gemm_op;
size_t workspace_size = gemm_op.get_workspace_size(args);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
CUTLASS_CHECK(gemm_op.can_implement(args));
cutlass::Status status = gemm_op(args, workspace.get(), stream);
CUTLASS_CHECK(status);
}
template <typename Gemm, typename FallbackGemm, typename... EpilogueArgs>
void fallback_cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
// In some cases, the GPU isn't able to accommodate the
// shared memory requirements of the Gemm. In such cases, use
// the FallbackGemm instead.
static const int max_shared_mem_per_block_opt_in =
get_cuda_max_shared_memory_per_block_opt_in(0);
size_t const gemm_shared_mem_size =
sizeof(typename Gemm::KernelType::SharedStorage);
size_t const fallback_gemm_shared_mem_size =
sizeof(typename FallbackGemm::KernelType::SharedStorage);
if (gemm_shared_mem_size <= max_shared_mem_per_block_opt_in) {
return cutlass_gemm_caller<Gemm>(out, a, b,
std::forward<EpilogueArgs>(args)...);
} else {
TORCH_CHECK(fallback_gemm_shared_mem_size <=
max_shared_mem_per_block_opt_in);
return cutlass_gemm_caller<FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_default {
// This config is used in 2 cases,
// - M in (128, inf)
// - M in (64, 128] and N >= 8192
// Shared Memory required by this Gemm - 81920 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M64 {
// This config is used in 2 cases,
// - M in (32, 64]
// - M in (64, 128] and N < 8192
// Shared Memory required by this Gemm - 122880 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M32 {
// M in (16, 32]
// Shared Memory required by this Gemm - 61440 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<32, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M16 {
// M in [1, 16]
// Shared Memory required by this Gemm - 51200 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<16, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<16, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
} // namespace
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm80_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, int8_t>());
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
using Cutlass2xGemmDefault =
typename sm80_config_default<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM128BigN =
typename sm80_config_default<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM128SmallN =
typename sm80_config_M64<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM64 =
typename sm80_config_M64<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM32 =
typename sm80_config_M32<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM16 =
typename sm80_config_M16<InType, OutType, Epilogue>::Cutlass2xGemm;
// Due to shared memory requirements, some Gemms may fail to run on some
// GPUs. As the name indicates, the Fallback Gemm is used as an alternative
// in such cases.
// sm80_config_M16 has the least shared-memory requirement. However,
// based on some profiling, we select sm80_config_M32 as a better alternative
// performance wise.
using FallbackGemm =
typename sm80_config_M32<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(16), next_pow_2(m)); // next power of 2
if (mp2 <= 16) {
// M in [1, 16]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM16, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 32) {
// M in (16, 32]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM32, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 64) {
// M in (32, 64]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM64, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// M in (64, 128]
uint32_t const n = out.size(1);
bool const small_n = n < 8192;
if (small_n) {
return fallback_cutlass_gemm_caller<Cutlass2xGemmM128SmallN,
FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
return fallback_cutlass_gemm_caller<Cutlass2xGemmM128BigN, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
} else {
// M in (128, inf)
return fallback_cutlass_gemm_caller<Cutlass2xGemmDefault, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
template <template <typename, typename> typename Epilogue, template <template <typename, typename> typename Epilogue,
typename... EpilogueArgs> typename... EpilogueArgs>
void cutlass_scaled_mm_sm75_epilogue(torch::Tensor& out, torch::Tensor const& a, void cutlass_scaled_mm_sm75_epilogue(torch::Tensor& out, torch::Tensor const& a,
@ -478,14 +24,15 @@ void cutlass_scaled_mm_sm75_epilogue(torch::Tensor& out, torch::Tensor const& a,
using InstructionShape = typename cutlass::gemm::GemmShape<8, 8, 16>; using InstructionShape = typename cutlass::gemm::GemmShape<8, 8, 16>;
if (out.dtype() == torch::kBFloat16) { if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_caller<cutlass_2x_gemm< return vllm::cutlass_gemm_caller<
cutlass::arch::Sm75, enable_sm75_to_sm80, int8_t, cutlass::bfloat16_t, vllm::cutlass_2x_gemm<cutlass::arch::Sm75, vllm::enable_sm75_to_sm80,
Epilogue, TileShape, WarpShape, InstructionShape, 2>>( int8_t, cutlass::bfloat16_t, Epilogue, TileShape,
WarpShape, InstructionShape, 2>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else { } else {
TORCH_CHECK(out.dtype() == torch::kFloat16); TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_caller<cutlass_2x_gemm< return vllm::cutlass_gemm_caller<vllm::cutlass_2x_gemm<
cutlass::arch::Sm75, enable_sm75_to_sm80, int8_t, cutlass::half_t, cutlass::arch::Sm75, vllm::enable_sm75_to_sm80, int8_t, cutlass::half_t,
Epilogue, TileShape, WarpShape, InstructionShape, 2>>( Epilogue, TileShape, WarpShape, InstructionShape, 2>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} }
@ -501,11 +48,11 @@ void cutlass_scaled_mm_sm75(torch::Tensor& out, torch::Tensor const& a,
if (bias) { if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(), TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype()); "currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm75_epilogue<ScaledEpilogueBias>( return cutlass_scaled_mm_sm75_epilogue<vllm::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias); out, a, b, a_scales, b_scales, *bias);
} else { } else {
return cutlass_scaled_mm_sm75_epilogue<ScaledEpilogue>(out, a, b, a_scales, return cutlass_scaled_mm_sm75_epilogue<vllm::ScaledEpilogue>(
b_scales); out, a, b, a_scales, b_scales);
} }
} }
@ -518,11 +65,12 @@ void cutlass_scaled_mm_sm80_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(b.dtype() == torch::kInt8); TORCH_CHECK(b.dtype() == torch::kInt8);
if (out.dtype() == torch::kBFloat16) { if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::bfloat16_t, Epilogue>( return vllm::cutlass_gemm_sm80_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else { } else {
TORCH_CHECK(out.dtype() == torch::kFloat16); TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm80_dispatch<int8_t, cutlass::half_t, Epilogue>( return vllm::cutlass_gemm_sm80_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} }
} }
@ -537,11 +85,11 @@ void cutlass_scaled_mm_sm80(torch::Tensor& out, torch::Tensor const& a,
if (bias) { if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(), TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype()); "currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm80_epilogue<ScaledEpilogueBias>( return cutlass_scaled_mm_sm80_epilogue<vllm::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias); out, a, b, a_scales, b_scales, *bias);
} else { } else {
return cutlass_scaled_mm_sm80_epilogue<ScaledEpilogue>(out, a, b, a_scales, return cutlass_scaled_mm_sm80_epilogue<vllm::ScaledEpilogue>(
b_scales); out, a, b, a_scales, b_scales);
} }
} }
@ -558,15 +106,17 @@ void cutlass_scaled_mm_sm89_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(b.dtype() == torch::kInt8); TORCH_CHECK(b.dtype() == torch::kInt8);
if (out.dtype() == torch::kBFloat16) { if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_caller<cutlass_2x_gemm< return vllm::cutlass_gemm_caller<
cutlass::arch::Sm89, enable_sm89_to_sm90, int8_t, cutlass::bfloat16_t, vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
Epilogue, TileShape, WarpShape, InstructionShape, 5>>( int8_t, cutlass::bfloat16_t, Epilogue,
TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else { } else {
assert(out.dtype() == torch::kFloat16); assert(out.dtype() == torch::kFloat16);
return cutlass_gemm_caller<cutlass_2x_gemm< return vllm::cutlass_gemm_caller<
cutlass::arch::Sm89, enable_sm89_to_sm90, int8_t, cutlass::half_t, vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
Epilogue, TileShape, WarpShape, InstructionShape, 5>>( int8_t, cutlass::half_t, Epilogue, TileShape,
WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} }
} else { } else {
@ -574,17 +124,13 @@ void cutlass_scaled_mm_sm89_epilogue(torch::Tensor& out, torch::Tensor const& a,
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn); TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
if (out.dtype() == torch::kBFloat16) { if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_caller< return vllm::cutlass_gemm_sm89_dispatch<cutlass::float_e4m3_t,
cutlass_2x_gemm<cutlass::arch::Sm89, enable_sm89_to_sm90, cutlass::bfloat16_t, Epilogue>(
cutlass::float_e4m3_t, cutlass::bfloat16_t, Epilogue,
TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} else { } else {
TORCH_CHECK(out.dtype() == torch::kFloat16); TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_caller< return vllm::cutlass_gemm_sm89_dispatch<cutlass::float_e4m3_t,
cutlass_2x_gemm<cutlass::arch::Sm89, enable_sm89_to_sm90, cutlass::half_t, Epilogue>(
cutlass::float_e4m3_t, cutlass::half_t, Epilogue,
TileShape, WarpShape, InstructionShape, 5>>(
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...); out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
} }
} }
@ -600,10 +146,10 @@ void cutlass_scaled_mm_sm89(torch::Tensor& out, torch::Tensor const& a,
if (bias) { if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(), TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype()); "currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_mm_sm89_epilogue<ScaledEpilogueBias>( return cutlass_scaled_mm_sm89_epilogue<vllm::ScaledEpilogueBias>(
out, a, b, a_scales, b_scales, *bias); out, a, b, a_scales, b_scales, *bias);
} else { } else {
return cutlass_scaled_mm_sm89_epilogue<ScaledEpilogue>(out, a, b, a_scales, return cutlass_scaled_mm_sm89_epilogue<vllm::ScaledEpilogue>(
b_scales); out, a, b, a_scales, b_scales);
} }
} }

View File

@ -0,0 +1,340 @@
#pragma once
#include <stddef.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
// clang-format will break include orders
// clang-format off
#include "cute/tensor.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cutlass/numeric_types.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm_coord.h"
#include "cutlass/arch/mma_sm75.h"
#include "cutlass/arch/arch.h"
#include "cutlass/arch/mma.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h"
#include "broadcast_load_epilogue_c2x.hpp"
#include "common.hpp"
// clang-format on
using namespace cute;
/*
Epilogue functions can be defined to post-process the output before it is
written to GPU memory.
Epilogues must contain a public type named EVTCompute of type Sm80EVT,
as well as a static prepare_args function that constructs an
EVTCompute::Arguments struct.
*/
namespace vllm {
// Wrappers for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm75_to_sm80 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 750 && __CUDA_ARCH__ < 800
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
template <typename Kernel>
struct enable_sm80_to_sm89 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800 && __CUDA_ARCH__ < 890
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
template <typename Kernel>
struct enable_sm89_to_sm90 : Kernel {
template <typename... Args>
CUTLASS_DEVICE static void invoke(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 890 && __CUDA_ARCH__ < 900
Kernel::invoke(std::forward<Args>(args)...);
#endif
}
};
/*
* This class provides the common ScaleA and ScaleB descriptors for the
* ScaledEpilogue and ScaledEpilogueBias classes.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBase {
protected:
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch;
using ScaleA = cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast<
OutputTileThreadMap, float, Stride<Int<1>, Int<0>, Int<0>>>;
using ScaleB = cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast<
OutputTileThreadMap, float, Stride<Int<0>, Int<1>, Int<0>>>;
};
/*
This epilogue function defines a quantized GEMM operation similar to
torch._scaled_mm.
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
per-row. B can be quantized per-tensor or per-column.
Any combination of per-tensor and per-row or column is supported.
A and B must have symmetric quantization (zero point == 0).
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
scales are applied elementwise with numpy-style broadcasting.
ScaleA and ScaleB define the epilogue functions that apply the scales for
the A and B operands respectively. These scales may be either per-tensor or
per row or column.
*/
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogue
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::ScaleA;
using ScaleB = typename SUPER::ScaleB;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
public:
using EVTCompute =
cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA, EVTCompute0>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
using ScaleAArgs = typename ScaleA::Arguments;
using ScaleBArgs = typename ScaleB::Arguments;
ScaleBArgs b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
ScaleAArgs a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
typename EVTCompute0::Arguments evt0_compute_args{b_args};
typename EVTCompute::Arguments evt_compute_args{a_args, evt0_compute_args};
return evt_compute_args;
}
};
template <typename ElementD, typename OutputTileThreadMap>
struct ScaledEpilogueBias
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
private:
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
using Accum = typename SUPER::Accum;
using ScaleA = typename SUPER::ScaleA;
using ScaleB = typename SUPER::ScaleB;
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiplies, float, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using EVTCompute0 =
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
cutlass::multiply_add, ElementD, float,
cutlass::FloatRoundStyle::round_to_nearest>;
using Bias = cutlass::epilogue::threadblock::VisitorRowBroadcast<
OutputTileThreadMap, ElementD, Stride<Int<0>, Int<1>, Int<0>>>;
public:
using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA,
EVTCompute0, Bias>;
using ArgumentType = typename EVTCompute::Arguments;
static ArgumentType prepare_args(torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
torch::Tensor const& bias) {
using ScaleAArgs = typename ScaleA::Arguments;
using ScaleBArgs = typename ScaleB::Arguments;
using BiasArgs = typename Bias::Arguments;
ScaleBArgs b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
ScaleAArgs a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
BiasArgs bias_args{static_cast<ElementD*>(bias.data_ptr()), {}};
typename EVTCompute0::Arguments evt0_compute_args{b_args};
typename EVTCompute::Arguments evt_compute_args{a_args, evt0_compute_args,
bias_args};
return evt_compute_args;
}
};
template <typename Arch, template <typename> typename ArchGuard,
typename ElementAB_, typename ElementD_,
template <typename, typename> typename Epilogue_, typename TileShape,
typename WarpShape, typename InstructionShape, int32_t MainLoopStages,
typename FP8MathOperator = cutlass::arch::OpMultiplyAdd>
struct cutlass_2x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using Operator =
typename std::conditional<std::is_same_v<ElementAB, int8_t>,
cutlass::arch::OpMultiplyAddSaturate,
FP8MathOperator>::type;
using OutputTileThreadMap =
cutlass::epilogue::threadblock::OutputTileThreadLayout<
TileShape, WarpShape, float, 4, 1 /* epilogue stages */
>;
using Epilogue = Epilogue_<ElementD, OutputTileThreadMap>;
using EVTCompute = typename Epilogue::EVTCompute;
using D = cutlass::epilogue::threadblock::VisitorAuxStore<
OutputTileThreadMap, ElementD, cutlass::FloatRoundStyle::round_to_nearest,
Stride<int64_t, Int<1>, Int<0>>>;
using EVTD = cutlass::epilogue::threadblock::Sm80EVT<D, EVTCompute>;
// clang-format off
using RowMajor = typename cutlass::layout::RowMajor;
using ColumnMajor = typename cutlass::layout::ColumnMajor;
using KernelType =
ArchGuard<typename cutlass::gemm::kernel::DefaultGemmWithVisitor<
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
float, cutlass::layout::RowMajor, 4,
ElementAcc, float, cutlass::arch::OpClassTensorOp,
Arch,
TileShape, WarpShape, InstructionShape,
EVTD,
cutlass::gemm::threadblock::ThreadblockSwizzleStreamK,
MainLoopStages, Operator,
1 /* epilogue stages */
>::GemmKernel>;
// clang-format on
using Op = cutlass::gemm::device::GemmUniversalAdapter<KernelType>;
};
template <typename Gemm, typename... EpilogueArgs>
inline void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0);
int32_t n = b.size(1);
int32_t k = a.size(1);
cutlass::gemm::GemmCoord problem_size{m, n, k};
int64_t lda = a.stride(0);
int64_t ldb = b.stride(1);
int64_t ldc = out.stride(0);
using StrideC = Stride<int64_t, Int<1>, Int<0>>;
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
auto a_ptr = static_cast<ElementAB const*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB const*>(b.data_ptr());
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename Gemm::D::Arguments d_args{c_ptr, c_stride};
using Epilogue = typename Gemm::Epilogue;
auto evt_args =
Epilogue::prepare_args(std::forward<EpilogueArgs>(epilogue_params)...);
typename Gemm::EVTD::Arguments epilogue_args{
evt_args,
d_args,
};
typename Gemm::Op::Arguments args{
cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel, // universal mode
problem_size, // problem size
1, // batch count
epilogue_args,
a_ptr,
b_ptr,
nullptr,
nullptr,
0,
0,
0,
0,
lda,
ldb,
ldc,
ldc};
// Launch the CUTLASS GEMM kernel.
typename Gemm::Op gemm_op;
size_t workspace_size = gemm_op.get_workspace_size(args);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
CUTLASS_CHECK(gemm_op.can_implement(args));
cutlass::Status status = gemm_op(args, workspace.get(), stream);
CUTLASS_CHECK(status);
}
template <typename Gemm, typename FallbackGemm, typename... EpilogueArgs>
inline void fallback_cutlass_gemm_caller(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
// In some cases, the GPU isn't able to accommodate the
// shared memory requirements of the Gemm. In such cases, use
// the FallbackGemm instead.
static const int max_shared_mem_per_block_opt_in =
get_cuda_max_shared_memory_per_block_opt_in(0);
size_t const gemm_shared_mem_size =
sizeof(typename Gemm::KernelType::SharedStorage);
size_t const fallback_gemm_shared_mem_size =
sizeof(typename FallbackGemm::KernelType::SharedStorage);
if (gemm_shared_mem_size <= max_shared_mem_per_block_opt_in) {
return cutlass_gemm_caller<Gemm>(out, a, b,
std::forward<EpilogueArgs>(args)...);
} else {
TORCH_CHECK(fallback_gemm_shared_mem_size <=
max_shared_mem_per_block_opt_in);
return cutlass_gemm_caller<FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
} // namespace vllm

View File

@ -0,0 +1,139 @@
#pragma once
#include "scaled_mm_c2x.cuh"
/**
* This file defines Gemm kernel configurations for SM80 based on the Gemm
* shape.
*/
namespace vllm {
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_default {
// This config is used in 2 cases,
// - M in (128, inf)
// - M in (64, 128] and N >= 8192
// Shared Memory required by this Gemm - 81920 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M64 {
// This config is used in 2 cases,
// - M in (32, 64]
// - M in (64, 128] and N < 8192
// Shared Memory required by this Gemm - 122880 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M32 {
// M in (16, 32]
// Shared Memory required by this Gemm - 61440 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<32, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm80_config_M16 {
// M in [1, 16]
// Shared Memory required by this Gemm - 51200 bytes
static_assert(std::is_same<InType, int8_t>());
using TileShape = typename cutlass::gemm::GemmShape<16, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<16, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm80, enable_sm80_to_sm89, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5>;
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
inline void cutlass_gemm_sm80_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, int8_t>());
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(b.dtype() == torch::kInt8);
using Cutlass2xGemmDefault =
typename sm80_config_default<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM128BigN =
typename sm80_config_default<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM128SmallN =
typename sm80_config_M64<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM64 =
typename sm80_config_M64<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM32 =
typename sm80_config_M32<InType, OutType, Epilogue>::Cutlass2xGemm;
using Cutlass2xGemmM16 =
typename sm80_config_M16<InType, OutType, Epilogue>::Cutlass2xGemm;
// Due to shared memory requirements, some Gemms may fail to run on some
// GPUs. As the name indicates, the Fallback Gemm is used as an alternative
// in such cases.
// sm80_config_M16 has the least shared-memory requirement. However,
// based on some profiling, we select sm80_config_M32 as a better alternative
// performance wise.
using FallbackGemm =
typename sm80_config_M32<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(16), next_pow_2(m)); // next power of 2
if (mp2 <= 16) {
// M in [1, 16]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM16, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 32) {
// M in (16, 32]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM32, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 64) {
// M in (32, 64]
return fallback_cutlass_gemm_caller<Cutlass2xGemmM64, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// M in (64, 128]
uint32_t const n = out.size(1);
bool const small_n = n < 8192;
if (small_n) {
return fallback_cutlass_gemm_caller<Cutlass2xGemmM128SmallN,
FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
return fallback_cutlass_gemm_caller<Cutlass2xGemmM128BigN, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
} else {
// M in (128, inf)
return fallback_cutlass_gemm_caller<Cutlass2xGemmDefault, FallbackGemm>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
} // namespace vllm

View File

@ -0,0 +1,362 @@
#pragma once
#include "scaled_mm_c2x.cuh"
#include "cutlass/float8.h"
/**
* This file defines Gemm kernel configurations for SM89 based on the Gemm
* shape.
*/
namespace vllm {
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue>
struct sm89_fallback_gemm {
// Shared Memory required by this Gemm - 61440 bytes
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 64>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAdd;
using Cutlass2xGemm =
cutlass_2x_gemm<cutlass::arch::Sm89, enable_sm89_to_sm90, InType, OutType,
Epilogue, TileShape, WarpShape, InstructionShape, 5,
FP8MathOperator>;
};
struct sm89_config_default {
// M in (256, inf)
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAddFastAccum;
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
static void dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
using FallbackGemm =
typename sm89_fallback_gemm<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const n = out.size(1);
uint32_t const np2 = next_pow_2(n);
if (np2 <= 4096) {
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (np2 <= 8192) {
using TileShape = typename cutlass::gemm::GemmShape<256, 128, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 3, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
};
struct sm89_config_M256 {
// M in (128, 256]
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAddFastAccum;
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
static void dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
using FallbackGemm =
typename sm89_fallback_gemm<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const n = out.size(1);
uint32_t const np2 = next_pow_2(n);
if (np2 <= 4096) {
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 128>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 3, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
};
struct sm89_config_M128 {
// M in (64, 128]
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAddFastAccum;
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
static void dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
using FallbackGemm =
typename sm89_fallback_gemm<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const n = out.size(1);
uint32_t const np2 = next_pow_2(n);
if (np2 <= 8192) {
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 128>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 3, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (np2 <= 16384) {
using TileShape = typename cutlass::gemm::GemmShape<128, 128, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
using TileShape = typename cutlass::gemm::GemmShape<128, 64, 128>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 3, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
};
struct sm89_config_M64 {
// M in (32, 64]
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
static void dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
using FallbackGemm =
typename sm89_fallback_gemm<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const n = out.size(1);
uint32_t const np2 = next_pow_2(n);
if (np2 <= 8196) {
using TileShape = typename cutlass::gemm::GemmShape<64, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAdd;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (np2 <= 16384) {
using TileShape = typename cutlass::gemm::GemmShape<64, 128, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<64, 64, 64>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAddFastAccum;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 3, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
using TileShape = typename cutlass::gemm::GemmShape<64, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAdd;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
};
struct sm89_config_M32 {
// M in (16, 32]
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAddFastAccum;
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
static void dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
using FallbackGemm =
typename sm89_fallback_gemm<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const n = out.size(1);
uint32_t const np2 = next_pow_2(n);
if (np2 <= 8192) {
using TileShape = typename cutlass::gemm::GemmShape<32, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<16, 64, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (np2 <= 16384) {
using TileShape = typename cutlass::gemm::GemmShape<32, 128, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<32, 64, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 4, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
using TileShape = typename cutlass::gemm::GemmShape<32, 64, 128>;
using WarpShape = typename cutlass::gemm::GemmShape<16, 64, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, 5, FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
};
struct sm89_config_M16 {
// M in [1, 16]
using WarpShape = typename cutlass::gemm::GemmShape<16, 64, 64>;
using InstructionShape = typename cutlass::gemm::GemmShape<16, 8, 32>;
using FP8MathOperator = typename cutlass::arch::OpMultiplyAddFastAccum;
static const int32_t MainLoopStages = 5;
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
static void dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b, EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
using FallbackGemm =
typename sm89_fallback_gemm<InType, OutType, Epilogue>::Cutlass2xGemm;
uint32_t const n = out.size(1);
uint32_t const np2 = next_pow_2(n);
if (np2 <= 8192) {
using TileShape = typename cutlass::gemm::GemmShape<16, 64, 128>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, MainLoopStages,
FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (np2 <= 24576) {
using TileShape = typename cutlass::gemm::GemmShape<16, 128, 64>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, MainLoopStages,
FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
using TileShape = typename cutlass::gemm::GemmShape<32, 64, 128>;
return vllm::fallback_cutlass_gemm_caller<
vllm::cutlass_2x_gemm<cutlass::arch::Sm89, vllm::enable_sm89_to_sm90,
InType, OutType, Epilogue, TileShape, WarpShape,
InstructionShape, MainLoopStages,
FP8MathOperator>,
FallbackGemm>(out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
};
template <typename InType, typename OutType,
template <typename, typename> typename Epilogue,
typename... EpilogueArgs>
inline void cutlass_gemm_sm89_dispatch(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& b,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(32), next_pow_2(m)); // next power of 2
if (mp2 <= 16) {
// M in [1, 16]
return sm89_config_M16::dispatch<InType, OutType, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 32) {
// M in (16, 32]
return sm89_config_M32::dispatch<InType, OutType, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 64) {
// M in (32, 64]
return sm89_config_M64::dispatch<InType, OutType, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// M in (64, 128]
return sm89_config_M128::dispatch<InType, OutType, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 256) {
// M in (128, 256]
return sm89_config_M256::dispatch<InType, OutType, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(args)...);
} else {
// M in (256, inf)
return sm89_config_default::dispatch<InType, OutType, Epilogue>(
out, a, b, std::forward<EpilogueArgs>(args)...);
}
}
} // namespace vllm

View File

@ -106,8 +106,8 @@ def cutlass_int8_gemm_helper(m: int,
assert torch.allclose(out, baseline, rtol=1e-1, atol=1e0) assert torch.allclose(out, baseline, rtol=1e-1, atol=1e0)
@pytest.mark.parametrize("m", [512, 222, 100, 33, 1]) @pytest.mark.parametrize("m", [1, 16, 32, 64, 128, 256, 512, 222, 100, 33])
@pytest.mark.parametrize("n", [2048, 256, 1024]) @pytest.mark.parametrize("n", [2048, 4096, 8192, 16384, 24576, 256, 1024])
@pytest.mark.parametrize("k", [128, 496, 1024]) @pytest.mark.parametrize("k", [128, 496, 1024])
@pytest.mark.parametrize("per_act_token", [True, False]) @pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False]) @pytest.mark.parametrize("per_out_ch", [True, False])