[Doc] Update LWS docs (#15163)
Signed-off-by: Edwinhr716 <Edandres249@gmail.com>
This commit is contained in:
parent
f8a08cb90d
commit
7297941b38
@ -7,5 +7,192 @@ A major use case is for multi-host/multi-node distributed inference.
|
||||
|
||||
vLLM can be deployed with [LWS](https://github.com/kubernetes-sigs/lws) on Kubernetes for distributed model serving.
|
||||
|
||||
Please see [this guide](https://github.com/kubernetes-sigs/lws/tree/main/docs/examples/vllm) for more details on
|
||||
deploying vLLM on Kubernetes using LWS.
|
||||
## Prerequisites
|
||||
|
||||
* At least two Kubernetes nodes, each with 8 GPUs, are required.
|
||||
* Install LWS by following the instructions found [here](https://lws.sigs.k8s.io/docs/installation/).
|
||||
|
||||
## Deploy and Serve
|
||||
|
||||
Deploy the following yaml file `lws.yaml`
|
||||
|
||||
```yaml
|
||||
apiVersion: leaderworkerset.x-k8s.io/v1
|
||||
kind: LeaderWorkerSet
|
||||
metadata:
|
||||
name: vllm
|
||||
spec:
|
||||
replicas: 2
|
||||
leaderWorkerTemplate:
|
||||
size: 2
|
||||
restartPolicy: RecreateGroupOnPodRestart
|
||||
leaderTemplate:
|
||||
metadata:
|
||||
labels:
|
||||
role: leader
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm-leader
|
||||
image: docker.io/vllm/vllm-openai:latest
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
value: <your-hf-token>
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=$(LWS_GROUP_SIZE);
|
||||
python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Meta-Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline_parallel_size 2"
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: "8"
|
||||
memory: 1124Gi
|
||||
ephemeral-storage: 800Gi
|
||||
requests:
|
||||
ephemeral-storage: 800Gi
|
||||
cpu: 125
|
||||
ports:
|
||||
- containerPort: 8080
|
||||
readinessProbe:
|
||||
tcpSocket:
|
||||
port: 8080
|
||||
initialDelaySeconds: 15
|
||||
periodSeconds: 10
|
||||
volumeMounts:
|
||||
- mountPath: /dev/shm
|
||||
name: dshm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 15Gi
|
||||
workerTemplate:
|
||||
spec:
|
||||
containers:
|
||||
- name: vllm-worker
|
||||
image: docker.io/vllm/vllm-openai:latest
|
||||
command:
|
||||
- sh
|
||||
- -c
|
||||
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(LWS_LEADER_ADDRESS)"
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: "8"
|
||||
memory: 1124Gi
|
||||
ephemeral-storage: 800Gi
|
||||
requests:
|
||||
ephemeral-storage: 800Gi
|
||||
cpu: 125
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
value: <your-hf-token>
|
||||
volumeMounts:
|
||||
- mountPath: /dev/shm
|
||||
name: dshm
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 15Gi
|
||||
---
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: vllm-leader
|
||||
spec:
|
||||
ports:
|
||||
- name: http
|
||||
port: 8080
|
||||
protocol: TCP
|
||||
targetPort: 8080
|
||||
selector:
|
||||
leaderworkerset.sigs.k8s.io/name: vllm
|
||||
role: leader
|
||||
type: ClusterIP
|
||||
```
|
||||
|
||||
```bash
|
||||
kubectl apply -f lws.yaml
|
||||
```
|
||||
|
||||
Verify the status of the pods:
|
||||
|
||||
```bash
|
||||
kubectl get pods
|
||||
```
|
||||
|
||||
Should get an output similar to this:
|
||||
|
||||
```bash
|
||||
NAME READY STATUS RESTARTS AGE
|
||||
vllm-0 1/1 Running 0 2s
|
||||
vllm-0-1 1/1 Running 0 2s
|
||||
vllm-1 1/1 Running 0 2s
|
||||
vllm-1-1 1/1 Running 0 2s
|
||||
```
|
||||
|
||||
Verify that the distributed tensor-parallel inference works:
|
||||
|
||||
```bash
|
||||
kubectl logs vllm-0 |grep -i "Loading model weights took"
|
||||
```
|
||||
|
||||
Should get something similar to this:
|
||||
|
||||
```text
|
||||
INFO 05-08 03:20:24 model_runner.py:173] Loading model weights took 0.1189 GB
|
||||
(RayWorkerWrapper pid=169, ip=10.20.0.197) INFO 05-08 03:20:28 model_runner.py:173] Loading model weights took 0.1189 GB
|
||||
```
|
||||
|
||||
## Access ClusterIP service
|
||||
|
||||
```bash
|
||||
# Listen on port 8080 locally, forwarding to the targetPort of the service's port 8080 in a pod selected by the service
|
||||
kubectl port-forward svc/vllm-leader 8080:8080
|
||||
```
|
||||
|
||||
The output should be similar to the following:
|
||||
|
||||
```text
|
||||
Forwarding from 127.0.0.1:8080 -> 8080
|
||||
Forwarding from [::1]:8080 -> 8080
|
||||
```
|
||||
|
||||
## Serve the model
|
||||
|
||||
Open another terminal and send a request
|
||||
|
||||
```text
|
||||
curl http://localhost:8080/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
||||
"prompt": "San Francisco is a",
|
||||
"max_tokens": 7,
|
||||
"temperature": 0
|
||||
}'
|
||||
```
|
||||
|
||||
The output should be similar to the following
|
||||
|
||||
```text
|
||||
{
|
||||
"id": "cmpl-1bb34faba88b43f9862cfbfb2200949d",
|
||||
"object": "text_completion",
|
||||
"created": 1715138766,
|
||||
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"text": " top destination for foodies, with",
|
||||
"logprobs": null,
|
||||
"finish_reason": "length",
|
||||
"stop_reason": null
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": 5,
|
||||
"total_tokens": 12,
|
||||
"completion_tokens": 7
|
||||
}
|
||||
}
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user