FastAPI-based working frontend (#10)
This commit is contained in:
parent
d359cda5fa
commit
721fa3df15
41
README.md
41
README.md
@ -8,9 +8,46 @@ pip install flash-attn # This may take up to 10 mins.
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
## Run
|
||||
## Test simple server
|
||||
|
||||
```bash
|
||||
ray start --head
|
||||
python server.py [--tensor-parallel-size <N>]
|
||||
python simple_server.py
|
||||
```
|
||||
|
||||
The detailed arguments for `simple_server.py` can be found by:
|
||||
```bash
|
||||
python simple_server.py --help
|
||||
```
|
||||
|
||||
## FastAPI server
|
||||
|
||||
Install the following additional dependencies:
|
||||
```bash
|
||||
pip install fastapi uvicorn
|
||||
```
|
||||
|
||||
To start the server:
|
||||
```bash
|
||||
ray start --head
|
||||
python -m cacheflow.http_frontend.fastapi_frontend
|
||||
```
|
||||
|
||||
To test the server:
|
||||
```bash
|
||||
python -m cacheflow.http_frontend.test_cli_client
|
||||
```
|
||||
|
||||
## Gradio web server
|
||||
|
||||
Install the following additional dependencies:
|
||||
```bash
|
||||
pip install gradio
|
||||
```
|
||||
|
||||
Start the server:
|
||||
```bash
|
||||
python -m cacheflow.http_frontend.fastapi_frontend
|
||||
# At another terminal
|
||||
python -m cacheflow.http_frontend.gradio_webserver
|
||||
```
|
||||
|
152
cacheflow/http_frontend/fastapi_frontend.py
Normal file
152
cacheflow/http_frontend/fastapi_frontend.py
Normal file
@ -0,0 +1,152 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import time
|
||||
from typing import List, Dict
|
||||
import json
|
||||
|
||||
import ray
|
||||
from transformers import AutoTokenizer
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
import uvicorn
|
||||
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import Sequence, SequenceGroup
|
||||
from cacheflow.master.server import (Server, add_server_arguments,
|
||||
initialize_ray_cluster)
|
||||
from cacheflow.worker.controller import DeviceID
|
||||
from cacheflow.utils import Counter, get_gpu_memory, get_cpu_memory
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
class FastAPIFrontend:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
model_path: str,
|
||||
pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int,
|
||||
block_size: int,
|
||||
dtype: str,
|
||||
seed: int,
|
||||
swap_space: int,
|
||||
max_batch_size: int,
|
||||
num_nodes: int,
|
||||
num_devices_per_node: int,
|
||||
distributed_init_method: str,
|
||||
all_stage_devices: List[List[DeviceID]],
|
||||
):
|
||||
self.block_size = block_size
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model)
|
||||
self.seq_group_counter = Counter()
|
||||
self.seq_counter = Counter()
|
||||
remote_server_class = ray.remote(num_cpus=0)(Server)
|
||||
self.server = remote_server_class.remote(
|
||||
model=model,
|
||||
model_path=model_path,
|
||||
pipeline_parallel_size=pipeline_parallel_size,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
block_size=block_size,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
swap_space=swap_space,
|
||||
max_batch_size=max_batch_size,
|
||||
num_nodes=num_nodes,
|
||||
num_devices_per_node=num_devices_per_node,
|
||||
distributed_init_method=distributed_init_method,
|
||||
all_stage_devices=all_stage_devices,
|
||||
gpu_memory=get_gpu_memory(),
|
||||
cpu_memory=get_cpu_memory(),
|
||||
)
|
||||
|
||||
self.running_seq_groups: Dict[int, SequenceGroup] = {}
|
||||
self.sequence_group_events: Dict[int, asyncio.Event] = {}
|
||||
self.is_server_running = False
|
||||
|
||||
async def server_step(self):
|
||||
self.is_server_running = True
|
||||
updated_seq_groups = await self.server.step.remote()
|
||||
self.is_server_running = False
|
||||
for seq_group in updated_seq_groups:
|
||||
group_id = seq_group.group_id
|
||||
self.running_seq_groups[group_id] = seq_group
|
||||
self.sequence_group_events[group_id].set()
|
||||
|
||||
async def generate(self, request_dict: Dict):
|
||||
prompt = request_dict["prompt"]
|
||||
sampling_params = SamplingParams.from_dict(request_dict)
|
||||
sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id)
|
||||
token_ids = self.tokenizer.encode(prompt)
|
||||
seqs: List[Sequence] = []
|
||||
for _ in range(sampling_params.n):
|
||||
seq_id = next(self.seq_counter)
|
||||
seq = Sequence(seq_id, token_ids, block_size=self.block_size)
|
||||
seqs.append(seq)
|
||||
|
||||
group_id = next(self.seq_group_counter)
|
||||
seq_group = SequenceGroup(group_id, seqs)
|
||||
group_event = asyncio.Event()
|
||||
self.sequence_group_events[group_id] = group_event
|
||||
await self.server.add_sequence_groups.remote([(seq_group, sampling_params)])
|
||||
while True:
|
||||
if not self.is_server_running:
|
||||
await self.server_step()
|
||||
# Wait for new output. Add a 1s timeout to prevent dead lock.
|
||||
await asyncio.wait_for(group_event.wait(), timeout=1)
|
||||
group_event.clear()
|
||||
seq_group = self.running_seq_groups[group_id]
|
||||
all_outputs = []
|
||||
for seq in seq_group.seqs:
|
||||
token_ids = seq.get_token_ids()
|
||||
output = self.tokenizer.decode(token_ids, skip_special_tokens=True)
|
||||
all_outputs.append(output)
|
||||
ret = {
|
||||
"text": all_outputs,
|
||||
"error": 0,
|
||||
}
|
||||
yield (json.dumps(ret) + "\0").encode("utf-8")
|
||||
if seq_group.is_finished():
|
||||
break
|
||||
|
||||
|
||||
@app.post("/generate")
|
||||
async def generate_stream(request: Request):
|
||||
request_dict = await request.json()
|
||||
return StreamingResponse(frontend.generate(request_dict))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=10002)
|
||||
parser = add_server_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
# TODO(zhuohan): Support pipeline parallelism.
|
||||
assert args.pipeline_parallel_size == 1, (
|
||||
'Pipeline parallelism is not supported yet.')
|
||||
|
||||
(num_nodes, num_devices_per_node, distributed_init_method,
|
||||
all_stage_devices) = (
|
||||
initialize_ray_cluster(
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size))
|
||||
|
||||
frontend = FastAPIFrontend(
|
||||
model=args.model,
|
||||
model_path=args.model_path,
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
block_size=args.block_size,
|
||||
dtype=args.dtype,
|
||||
seed=args.seed,
|
||||
swap_space=args.swap_space,
|
||||
max_batch_size=args.max_batch_size,
|
||||
num_nodes=num_nodes,
|
||||
num_devices_per_node=num_devices_per_node,
|
||||
distributed_init_method=distributed_init_method,
|
||||
all_stage_devices=all_stage_devices,
|
||||
)
|
||||
|
||||
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
43
cacheflow/http_frontend/gradio_webserver.py
Normal file
43
cacheflow/http_frontend/gradio_webserver.py
Normal file
@ -0,0 +1,43 @@
|
||||
import argparse
|
||||
import json
|
||||
import time
|
||||
|
||||
import gradio as gr
|
||||
import requests
|
||||
|
||||
|
||||
def http_bot(prompt):
|
||||
headers = {"User-Agent": "Cacheflow Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"max_num_steps": 128,
|
||||
}
|
||||
response = requests.post(args.model_url, headers=headers, json=pload, stream=True)
|
||||
|
||||
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"][0]
|
||||
yield output
|
||||
|
||||
|
||||
def build_demo():
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown(
|
||||
"# Cacheflow demo\n"
|
||||
)
|
||||
inputbox = gr.Textbox(label="Input", placeholder="Enter text and press ENTER")# .style(container=False)
|
||||
outputbox = gr.Textbox(label="Output", placeholder="Generated result from the model")
|
||||
inputbox.submit(http_bot, [inputbox], [outputbox])
|
||||
return demo
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=10003)
|
||||
parser.add_argument("--model-url", type=str, default="http://localhost:10002/generate")
|
||||
args = parser.parse_args()
|
||||
|
||||
demo = build_demo()
|
||||
demo.queue(concurrency_count=100).launch(server_name=args.host, server_port=args.port)
|
23
cacheflow/http_frontend/test_cli_client.py
Normal file
23
cacheflow/http_frontend/test_cli_client.py
Normal file
@ -0,0 +1,23 @@
|
||||
import requests
|
||||
import json
|
||||
|
||||
def http_request():
|
||||
prompt = "Ion Stoica is a"
|
||||
|
||||
headers = {"User-Agent": "Test Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
"n": 4,
|
||||
"use_beam_search": True,
|
||||
"temperature": 0.0,
|
||||
}
|
||||
response = requests.post("http://localhost:10002/generate", headers=headers, json=pload, stream=True)
|
||||
|
||||
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"]
|
||||
yield output
|
||||
|
||||
for h in http_request():
|
||||
print(h, flush=True)
|
@ -1,7 +1,6 @@
|
||||
from typing import Dict, List
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
from cacheflow.master.block_manager import BlockSpaceManager
|
||||
from cacheflow.master.frontend import Frontend
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import Sequence
|
||||
from cacheflow.sequence import SequenceGroup
|
||||
@ -14,14 +13,12 @@ class Scheduler:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
frontend: Frontend,
|
||||
controllers: List,
|
||||
block_size: int,
|
||||
num_gpu_blocks: int,
|
||||
num_cpu_blocks: int,
|
||||
max_num_batched_tokens: int,
|
||||
) -> None:
|
||||
self.frontend = frontend
|
||||
self.controllers = controllers
|
||||
self.block_size = block_size
|
||||
self.num_gpu_blocks = num_gpu_blocks
|
||||
@ -47,9 +44,12 @@ class Scheduler:
|
||||
# Pending sequence groups (FIFO).
|
||||
self.pending: List[SequenceGroup] = []
|
||||
|
||||
def _fetch_inputs(self) -> None:
|
||||
inputs = self.frontend.get_inputs()
|
||||
for seq_group, sampling_params in inputs:
|
||||
def add_sequence_groups(
|
||||
self,
|
||||
sequence_groups: List[Tuple[SequenceGroup, SamplingParams]],
|
||||
) -> None:
|
||||
# Add sequence groups to the pending queue.
|
||||
for seq_group, sampling_params in sequence_groups:
|
||||
self.pending.append(seq_group)
|
||||
self.sampling_params[seq_group.group_id] = sampling_params
|
||||
|
||||
@ -104,7 +104,7 @@ class Scheduler:
|
||||
seq.status = SequenceStatus.SWAPPED
|
||||
self.swapped.append(seq_group)
|
||||
|
||||
def step(self) -> None:
|
||||
def step(self) -> List[SequenceGroup]:
|
||||
# Blocks that need to be swaped or copied before model execution.
|
||||
blocks_to_swap_in: Dict[int, int] = {}
|
||||
blocks_to_swap_out: Dict[int, int] = {}
|
||||
@ -158,7 +158,6 @@ class Scheduler:
|
||||
# 3. Join new sequences if possible.
|
||||
# NOTE: Here we implicitly assume FCFS scheduling.
|
||||
# TODO(woosuk): Add a batching policy to control the batch size.
|
||||
self._fetch_inputs()
|
||||
if not self.swapped:
|
||||
for i, seq_group in enumerate(self.pending):
|
||||
num_prompt_tokens = seq_group.seqs[0].get_len()
|
||||
@ -176,6 +175,8 @@ class Scheduler:
|
||||
|
||||
# 4. Create input data structures.
|
||||
input_seq_groups: List[SequenceGroupInputs] = []
|
||||
updated_seq_groups: List[SequenceGroup] = self.running.copy()
|
||||
|
||||
for seq_group in self.running:
|
||||
group_id = seq_group.group_id
|
||||
num_steps = self.num_steps[group_id]
|
||||
@ -219,6 +220,8 @@ class Scheduler:
|
||||
blocks_to_copy,
|
||||
)
|
||||
|
||||
return updated_seq_groups
|
||||
|
||||
def post_step(
|
||||
self,
|
||||
seq_outputs: Dict[int, SequenceOutputs],
|
||||
@ -268,13 +271,12 @@ class Scheduler:
|
||||
running: List[SequenceGroup] = []
|
||||
for seq_group in self.running:
|
||||
if seq_group.is_finished():
|
||||
self._return(seq_group)
|
||||
self._free_seq_group(seq_group)
|
||||
else:
|
||||
running.append(seq_group)
|
||||
self.running = running
|
||||
|
||||
def _return(self, seq_group: SequenceGroup) -> None:
|
||||
def _free_seq_group(self, seq_group: SequenceGroup) -> None:
|
||||
group_id = seq_group.group_id
|
||||
del self.num_steps[group_id]
|
||||
del self.sampling_params[group_id]
|
||||
self.frontend.print_response(seq_group)
|
||||
|
@ -1,13 +1,98 @@
|
||||
import argparse
|
||||
from typing import List, Tuple
|
||||
import random
|
||||
from typing import List, Tuple, Dict
|
||||
|
||||
import ray
|
||||
|
||||
from cacheflow.master.frontend import Frontend
|
||||
from cacheflow.master.scheduler import Scheduler
|
||||
from cacheflow.models import get_memory_analyzer
|
||||
from cacheflow.worker.controller import Controller, DeviceID
|
||||
from cacheflow.sequence import SequenceGroup
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
|
||||
class Server:
|
||||
def __init__(
|
||||
self,
|
||||
model: str,
|
||||
model_path: str,
|
||||
pipeline_parallel_size: int,
|
||||
tensor_parallel_size: int,
|
||||
block_size: int,
|
||||
dtype: str,
|
||||
seed: int,
|
||||
swap_space: int,
|
||||
max_batch_size: int,
|
||||
num_nodes: int,
|
||||
num_devices_per_node: int,
|
||||
distributed_init_method: str,
|
||||
all_stage_devices: List[List[DeviceID]],
|
||||
gpu_memory: int,
|
||||
cpu_memory: int,
|
||||
):
|
||||
self.num_nodes = num_nodes
|
||||
self.num_devices_per_node = num_devices_per_node
|
||||
self.world_size = pipeline_parallel_size * tensor_parallel_size
|
||||
|
||||
self.memory_analyzer = get_memory_analyzer(
|
||||
model_name=model,
|
||||
block_size=block_size,
|
||||
dtype=dtype,
|
||||
gpu_memory=gpu_memory,
|
||||
cpu_memory=cpu_memory,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
)
|
||||
self.num_gpu_blocks = self.memory_analyzer.get_max_num_gpu_blocks(
|
||||
max_num_batched_tokens=max_batch_size)
|
||||
self.num_cpu_blocks = self.memory_analyzer.get_max_num_cpu_blocks(
|
||||
swap_space=swap_space)
|
||||
print(f'# GPU blocks: {self.num_gpu_blocks}, '
|
||||
f'# CPU blocks: {self.num_cpu_blocks}')
|
||||
|
||||
# Create a controller for each pipeline stage.
|
||||
self.controllers: List[Controller] = []
|
||||
for i in range(pipeline_parallel_size):
|
||||
controller = Controller(
|
||||
stage_id=i,
|
||||
stage_devices=all_stage_devices[i],
|
||||
world_size=self.world_size,
|
||||
pipeline_parallel_size=pipeline_parallel_size,
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
distributed_init_method=distributed_init_method,
|
||||
model_name=model,
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=self.num_gpu_blocks,
|
||||
num_cpu_blocks=self.num_cpu_blocks,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
model_path=model_path,
|
||||
)
|
||||
self.controllers.append(controller)
|
||||
|
||||
# Create a scheduler.
|
||||
self.scheduler = Scheduler(
|
||||
controllers=self.controllers,
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=self.num_gpu_blocks,
|
||||
num_cpu_blocks=self.num_cpu_blocks,
|
||||
max_num_batched_tokens=max_batch_size,
|
||||
)
|
||||
# Connect the controllers.
|
||||
for i in range(len(self.controllers) - 1):
|
||||
self.controllers[i].set_next(self.controllers[i + 1])
|
||||
self.controllers[-1].set_next(self.scheduler)
|
||||
|
||||
def add_sequence_groups(
|
||||
self,
|
||||
sequence_groups: List[Tuple[SequenceGroup, SamplingParams]]
|
||||
):
|
||||
self.scheduler.add_sequence_groups(sequence_groups)
|
||||
|
||||
def step(self):
|
||||
return self.scheduler.step()
|
||||
|
||||
def has_unfinished_requests(self):
|
||||
return (self.scheduler.pending or self.scheduler.running or
|
||||
self.scheduler.swapped)
|
||||
|
||||
|
||||
def initialize_ray_cluster(
|
||||
@ -76,88 +161,7 @@ def initialize_ray_cluster(
|
||||
all_stage_devices)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
# TODO(zhuohan): Support pipeline parallelism.
|
||||
assert args.pipeline_parallel_size == 1, (
|
||||
'Pipeline parallelism is not supported yet.')
|
||||
|
||||
(num_nodes, num_devices_per_node, distributed_init_method,
|
||||
all_stage_devices) = (
|
||||
initialize_ray_cluster(
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size))
|
||||
|
||||
world_size = args.pipeline_parallel_size * args.tensor_parallel_size
|
||||
|
||||
memory_analyzer = get_memory_analyzer(
|
||||
model_name=args.model,
|
||||
block_size=args.block_size,
|
||||
dtype=args.dtype,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
)
|
||||
num_gpu_blocks = memory_analyzer.get_max_num_gpu_blocks(
|
||||
max_num_batched_tokens=args.max_batch_size)
|
||||
num_cpu_blocks = memory_analyzer.get_max_num_cpu_blocks(
|
||||
swap_space=args.swap_space)
|
||||
print(f'# GPU blocks: {num_gpu_blocks}, # CPU blocks: {num_cpu_blocks}')
|
||||
|
||||
# Create a controller for each pipeline stage.
|
||||
controllers: List[Controller] = []
|
||||
for i in range(args.pipeline_parallel_size):
|
||||
controller = Controller(
|
||||
stage_id=i,
|
||||
stage_devices=all_stage_devices[i],
|
||||
world_size=world_size,
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
distributed_init_method=distributed_init_method,
|
||||
model_name=args.model,
|
||||
block_size=args.block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=num_cpu_blocks,
|
||||
dtype=args.dtype,
|
||||
seed=args.seed,
|
||||
model_path=args.model_path,
|
||||
)
|
||||
controllers.append(controller)
|
||||
|
||||
# Create a frontend.
|
||||
frontend = Frontend(
|
||||
model_name=args.model,
|
||||
block_size=args.block_size,
|
||||
)
|
||||
|
||||
# Create a scheduler.
|
||||
scheduler = Scheduler(
|
||||
frontend=frontend,
|
||||
controllers=controllers,
|
||||
block_size=args.block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=num_cpu_blocks,
|
||||
max_num_batched_tokens=args.max_batch_size,
|
||||
)
|
||||
# Connect the controllers.
|
||||
for i in range(len(controllers) - 1):
|
||||
controllers[i].set_next(controllers[i + 1])
|
||||
controllers[-1].set_next(scheduler)
|
||||
|
||||
# Test the following inputs.
|
||||
test_inputs = [
|
||||
('Ion Stoica is a', {'n': 4, 'use_beam_search': True, 'temperature': 0.0}),
|
||||
('UC Berkeley is', {'n': 3, 'temperature': 0.8, 'top_p': 0.99}),
|
||||
('The future of cloud computing is', {}), # Use default parameters.
|
||||
]
|
||||
while True:
|
||||
if test_inputs:
|
||||
text, sampling_params = test_inputs.pop(0)
|
||||
frontend.query(text, **sampling_params)
|
||||
scheduler.step()
|
||||
if not (scheduler.pending or scheduler.running or test_inputs):
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='CacheFlow server')
|
||||
def add_server_arguments(parser: argparse.ArgumentParser):
|
||||
# Model arguments
|
||||
parser.add_argument('--model', type=str, default='facebook/opt-125m', help='model name')
|
||||
parser.add_argument('--model-path', type=str, default='~/.cacheflow/model_weights',
|
||||
@ -173,6 +177,4 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--seed', type=int, default=0, help='random seed')
|
||||
parser.add_argument('--swap-space', type=int, default=20, help='CPU swap space size (GiB) per GPU')
|
||||
parser.add_argument('--max-batch-size', type=int, default=2560, help='maximum number of batched tokens')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
return parser
|
@ -3,12 +3,11 @@ from typing import List, Optional, Set, Tuple
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.sequence import Sequence
|
||||
from cacheflow.sequence import SequenceGroup
|
||||
from cacheflow.sequence import Sequence, SequenceGroup
|
||||
from cacheflow.utils import Counter
|
||||
|
||||
|
||||
class Frontend:
|
||||
class SimpleFrontend:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -22,30 +21,16 @@ class Frontend:
|
||||
self.seq_counter = Counter()
|
||||
self.inputs: List[Tuple[SequenceGroup, SamplingParams]] = []
|
||||
|
||||
def add_eos_token(self, sampling_params: SamplingParams) -> SamplingParams:
|
||||
# Stop generation when we see an EOS token.
|
||||
sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id)
|
||||
return sampling_params
|
||||
|
||||
def query(
|
||||
self,
|
||||
prompt: str,
|
||||
n: int = 1,
|
||||
temperature: float = 1.0,
|
||||
top_p: float = 1.0,
|
||||
use_beam_search: bool = False,
|
||||
stop_token_ids: Set[int] = set(),
|
||||
max_num_steps: int = 16, # From OpenAI API.
|
||||
num_logprobs: int = 0,
|
||||
context_window_size: Optional[int] = None,
|
||||
sampling_params: SamplingParams,
|
||||
) -> None:
|
||||
# Stop when we see an EOS token.
|
||||
stop_token_ids.add(self.tokenizer.eos_token_id)
|
||||
sampling_params = SamplingParams(
|
||||
n=n,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
use_beam_search=use_beam_search,
|
||||
stop_token_ids=stop_token_ids,
|
||||
max_num_steps=max_num_steps,
|
||||
num_logprobs=num_logprobs,
|
||||
context_window_size=context_window_size,
|
||||
)
|
||||
token_ids = self.tokenizer.encode(prompt)
|
||||
self._add_query(token_ids, sampling_params)
|
||||
|
@ -1,9 +1,7 @@
|
||||
import torch
|
||||
from transformers import AutoConfig
|
||||
|
||||
from cacheflow.models.utils import get_cpu_memory
|
||||
from cacheflow.models.utils import get_dtype_size
|
||||
from cacheflow.models.utils import get_gpu_memory
|
||||
|
||||
_GiB = 1 << 30
|
||||
|
||||
@ -31,11 +29,15 @@ class OPTMemoryAnalyzer(CacheFlowMemoryAnalyzer):
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
dtype: torch.dtype,
|
||||
gpu_memory: int,
|
||||
cpu_memory: int,
|
||||
tensor_parallel_size: int,
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self.block_size = block_size
|
||||
self.dtype = dtype
|
||||
self.gpu_memory = gpu_memory
|
||||
self.cpu_memory = cpu_memory
|
||||
self.tensor_parallel_size = tensor_parallel_size
|
||||
|
||||
config = AutoConfig.from_pretrained(model_name)
|
||||
@ -106,8 +108,7 @@ class OPTMemoryAnalyzer(CacheFlowMemoryAnalyzer):
|
||||
memory_utilization: float = 0.95,
|
||||
) -> int:
|
||||
# NOTE(woosuk): This assumes that the machine has homogeneous GPUs.
|
||||
gpu_memory = get_gpu_memory()
|
||||
usable_memory = int(memory_utilization * gpu_memory)
|
||||
usable_memory = int(memory_utilization * self.gpu_memory)
|
||||
|
||||
param_size = self._get_param_size()
|
||||
act_size = self._get_max_act_size(max_num_batched_tokens)
|
||||
@ -122,16 +123,15 @@ class OPTMemoryAnalyzer(CacheFlowMemoryAnalyzer):
|
||||
swap_space: int,
|
||||
) -> int:
|
||||
swap_space = swap_space * _GiB
|
||||
cpu_memory = get_cpu_memory()
|
||||
if swap_space > 0.8 * cpu_memory:
|
||||
if swap_space > 0.8 * self.cpu_memory:
|
||||
raise ValueError(f'The swap space ({swap_space / _GiB:.2f} GiB) '
|
||||
'takes more than 80% of the available memory '
|
||||
f'({cpu_memory / _GiB:.2f} GiB).'
|
||||
f'({self.cpu_memory / _GiB:.2f} GiB).'
|
||||
'Please check the swap space size.')
|
||||
if swap_space > 0.5 * cpu_memory:
|
||||
if swap_space > 0.5 * self.cpu_memory:
|
||||
print(f'WARNING: The swap space ({swap_space / _GiB:.2f} GiB) '
|
||||
'takes more than 50% of the available memory '
|
||||
f'({cpu_memory / _GiB:.2f} GiB).'
|
||||
f'({self.cpu_memory / _GiB:.2f} GiB).'
|
||||
'This may slow the system performance.')
|
||||
max_num_blocks = swap_space // self._get_cache_block_size()
|
||||
return max_num_blocks
|
||||
|
@ -44,11 +44,14 @@ def get_memory_analyzer(
|
||||
model_name: str,
|
||||
block_size: int,
|
||||
dtype: Union[torch.dtype, str],
|
||||
gpu_memory: int,
|
||||
cpu_memory: int,
|
||||
tensor_parallel_size: int = 1,
|
||||
) -> CacheFlowMemoryAnalyzer:
|
||||
torch_dtype = get_torch_dtype(dtype)
|
||||
for model_class, memory_analyzer in _MEMORY_ANALYZERS.items():
|
||||
if model_class in model_name:
|
||||
return memory_analyzer(
|
||||
model_name, block_size, torch_dtype, tensor_parallel_size)
|
||||
model_name, block_size, torch_dtype, gpu_memory, cpu_memory,
|
||||
tensor_parallel_size)
|
||||
raise ValueError(f'Unsupported model name: {model_name}')
|
||||
|
@ -1,9 +1,5 @@
|
||||
from typing import Union
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import psutil
|
||||
import torch
|
||||
|
||||
_STR_DTYPE_TO_TORCH_DTYPE = {
|
||||
@ -26,10 +22,3 @@ def get_dtype_size(dtype: Union[torch.dtype, str]) -> int:
|
||||
torch_dtype = get_torch_dtype(dtype)
|
||||
return torch.tensor([], dtype=torch_dtype).element_size()
|
||||
|
||||
|
||||
def get_gpu_memory(gpu: int = 0) -> int:
|
||||
return torch.cuda.get_device_properties(gpu).total_memory
|
||||
|
||||
|
||||
def get_cpu_memory() -> int:
|
||||
return psutil.virtual_memory().total
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Optional, Set
|
||||
from typing import Optional, Set, Dict
|
||||
|
||||
|
||||
class SamplingParams:
|
||||
@ -69,3 +69,16 @@ class SamplingParams:
|
||||
f'max_num_steps={self.max_num_steps}, '
|
||||
f'num_logprobs={self.num_logprobs}, '
|
||||
f'context_window_size={self.context_window_size})')
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, d: Dict) -> 'SamplingParams':
|
||||
return cls(
|
||||
n=d.get('n', 1),
|
||||
temperature=d.get('temperature', 1.0),
|
||||
top_p=d.get('top_p', 1.0),
|
||||
use_beam_search=d.get('use_beam_search', False),
|
||||
stop_token_ids=set(d.get('stop_token_ids', set())),
|
||||
max_num_steps=d.get('max_num_steps', 16),
|
||||
num_logprobs=d.get('num_logprobs', 0),
|
||||
context_window_size=d.get('context_window_size', None),
|
||||
)
|
||||
|
@ -1,5 +1,6 @@
|
||||
import enum
|
||||
import random
|
||||
import psutil
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -26,6 +27,7 @@ class Counter:
|
||||
def reset(self) -> None:
|
||||
self.counter = 0
|
||||
|
||||
|
||||
def set_random_seed(seed: int):
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
@ -35,3 +37,11 @@ def set_random_seed(seed: int):
|
||||
|
||||
if model_parallel_is_initialized():
|
||||
model_parallel_cuda_manual_seed(seed)
|
||||
|
||||
|
||||
def get_gpu_memory(gpu: int = 0) -> int:
|
||||
return torch.cuda.get_device_properties(gpu).total_memory
|
||||
|
||||
|
||||
def get_cpu_memory() -> int:
|
||||
return psutil.virtual_memory().total
|
||||
|
20
playground/http_client.py
Normal file
20
playground/http_client.py
Normal file
@ -0,0 +1,20 @@
|
||||
import requests
|
||||
import json
|
||||
|
||||
def http_bot():
|
||||
prompt = "How are you? I'm fine."
|
||||
|
||||
headers = {"User-Agent": "Test Client"}
|
||||
pload = {
|
||||
"prompt": prompt,
|
||||
}
|
||||
response = requests.post("http://localhost:10002", headers=headers, json=pload, stream=True)
|
||||
|
||||
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode("utf-8"))
|
||||
output = data["text"]
|
||||
yield output
|
||||
|
||||
for h in http_bot():
|
||||
print(h, end="", flush=True)
|
40
playground/streaming_fastapi_worker.py
Normal file
40
playground/streaming_fastapi_worker.py
Normal file
@ -0,0 +1,40 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import time
|
||||
from typing import Union
|
||||
import json
|
||||
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
import uvicorn
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
async def text_streamer(args):
|
||||
context = args["prompt"]
|
||||
words = context.split(" ")
|
||||
for word in words:
|
||||
await asyncio.sleep(1)
|
||||
print("word:", word)
|
||||
ret = {
|
||||
"text": word + " ",
|
||||
"error": 0,
|
||||
}
|
||||
yield (json.dumps(ret) + "\0").encode("utf-8")
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def read_root(request: Request):
|
||||
args = await request.json()
|
||||
return StreamingResponse(text_streamer(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="localhost")
|
||||
parser.add_argument("--port", type=int, default=10002)
|
||||
args = parser.parse_args()
|
||||
|
||||
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
71
simple_server.py
Normal file
71
simple_server.py
Normal file
@ -0,0 +1,71 @@
|
||||
import argparse
|
||||
from typing import List
|
||||
|
||||
from cacheflow.master.simple_frontend import SimpleFrontend
|
||||
from cacheflow.master.server import (Server, add_server_arguments,
|
||||
initialize_ray_cluster)
|
||||
from cacheflow.sampling_params import SamplingParams
|
||||
from cacheflow.utils import get_gpu_memory, get_cpu_memory
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
# TODO(zhuohan): Support pipeline parallelism.
|
||||
assert args.pipeline_parallel_size == 1, (
|
||||
'Pipeline parallelism is not supported yet.')
|
||||
|
||||
(num_nodes, num_devices_per_node, distributed_init_method,
|
||||
all_stage_devices) = (
|
||||
initialize_ray_cluster(
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size))
|
||||
|
||||
# Create a server.
|
||||
server = Server(
|
||||
model=args.model,
|
||||
model_path=args.model_path,
|
||||
pipeline_parallel_size=args.pipeline_parallel_size,
|
||||
tensor_parallel_size=args.tensor_parallel_size,
|
||||
block_size=args.block_size,
|
||||
dtype=args.dtype,
|
||||
seed=args.seed,
|
||||
swap_space=args.swap_space,
|
||||
max_batch_size=args.max_batch_size,
|
||||
num_nodes=num_nodes,
|
||||
num_devices_per_node=num_devices_per_node,
|
||||
distributed_init_method=distributed_init_method,
|
||||
all_stage_devices=all_stage_devices,
|
||||
gpu_memory=get_gpu_memory(),
|
||||
cpu_memory=get_cpu_memory(),
|
||||
)
|
||||
|
||||
# Create a frontend.
|
||||
frontend = SimpleFrontend(
|
||||
model_name=args.model,
|
||||
block_size=args.block_size,
|
||||
)
|
||||
|
||||
# Test the following inputs.
|
||||
test_inputs = [
|
||||
('Ion Stoica is a', {'n': 4, 'use_beam_search': True, 'temperature': 0.0}),
|
||||
('UC Berkeley is', {'n': 3, 'temperature': 0.8, 'top_p': 0.99}),
|
||||
('The future of cloud computing is', {}), # Use default parameters.
|
||||
]
|
||||
while True:
|
||||
if test_inputs:
|
||||
text, sampling_params_dict = test_inputs.pop(0)
|
||||
sampling_params = SamplingParams.from_dict(sampling_params_dict)
|
||||
sampling_params = frontend.add_eos_token(sampling_params)
|
||||
frontend.query(text, sampling_params)
|
||||
server.add_sequence_groups(frontend.get_inputs())
|
||||
updated_seq_groups = server.step()
|
||||
for seq_group in updated_seq_groups:
|
||||
if seq_group.is_finished():
|
||||
frontend.print_response(seq_group)
|
||||
if not (server.has_unfinished_requests() or test_inputs):
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='CacheFlow simple server.')
|
||||
parser = add_server_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
Loading…
x
Reference in New Issue
Block a user