[Doc][4/N] Reorganize API Reference (#11843)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
aba8d6ee00
commit
6cd40a5bfe
@ -38,7 +38,7 @@ steps:
|
||||
- pip install -r requirements-docs.txt
|
||||
- SPHINXOPTS=\"-W\" make html
|
||||
# Check API reference (if it fails, you may have missing mock imports)
|
||||
- grep \"sig sig-object py\" build/html/dev/sampling_params.html
|
||||
- grep \"sig sig-object py\" build/html/api/params.html
|
||||
|
||||
- label: Async Engine, Inputs, Utils, Worker Test # 24min
|
||||
fast_check: true
|
||||
|
@ -2,8 +2,8 @@
|
||||
# to run the OpenAI compatible server.
|
||||
|
||||
# Please update any changes made here to
|
||||
# docs/source/dev/dockerfile/dockerfile.md and
|
||||
# docs/source/assets/dev/dockerfile-stages-dependency.png
|
||||
# docs/source/contributing/dockerfile/dockerfile.md and
|
||||
# docs/source/assets/contributing/dockerfile-stages-dependency.png
|
||||
|
||||
ARG CUDA_VERSION=12.4.1
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
|
@ -11,18 +11,8 @@ vLLM provides experimental support for multi-modal models through the {mod}`vllm
|
||||
Multi-modal inputs can be passed alongside text and token prompts to [supported models](#supported-mm-models)
|
||||
via the `multi_modal_data` field in {class}`vllm.inputs.PromptType`.
|
||||
|
||||
Currently, vLLM only has built-in support for image data. You can extend vLLM to process additional modalities
|
||||
by following [this guide](#adding-multimodal-plugin).
|
||||
|
||||
Looking to add your own multi-modal model? Please follow the instructions listed [here](#enabling-multimodal-inputs).
|
||||
|
||||
## Guides
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
adding_multimodal_plugin
|
||||
```
|
||||
|
||||
## Module Contents
|
||||
|
22
docs/source/api/params.md
Normal file
22
docs/source/api/params.md
Normal file
@ -0,0 +1,22 @@
|
||||
# Optional Parameters
|
||||
|
||||
Optional parameters for vLLM APIs.
|
||||
|
||||
(sampling-params)=
|
||||
|
||||
## Sampling Parameters
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.SamplingParams
|
||||
:members:
|
||||
```
|
||||
|
||||
(pooling-params)=
|
||||
|
||||
## Pooling Parameters
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.PoolingParams
|
||||
:members:
|
||||
```
|
||||
|
Before Width: | Height: | Size: 115 KiB After Width: | Height: | Size: 115 KiB |
@ -17,7 +17,7 @@ The edges of the build graph represent:
|
||||
|
||||
- `RUN --mount=(.\*)from=...` dependencies (with a dotted line and an empty diamond arrow head)
|
||||
|
||||
> ```{figure} ../../assets/dev/dockerfile-stages-dependency.png
|
||||
> ```{figure} /assets/contributing/dockerfile-stages-dependency.png
|
||||
> :align: center
|
||||
> :alt: query
|
||||
> :width: 100%
|
||||
|
@ -53,7 +53,7 @@ for output in outputs:
|
||||
```
|
||||
|
||||
More API details can be found in the {doc}`Offline Inference
|
||||
</dev/offline_inference/offline_index>` section of the API docs.
|
||||
</api/offline_inference/index>` section of the API docs.
|
||||
|
||||
The code for the `LLM` class can be found in <gh-file:vllm/entrypoints/llm.py>.
|
||||
|
||||
|
@ -1,16 +0,0 @@
|
||||
(adding-multimodal-plugin)=
|
||||
|
||||
# Adding a Multimodal Plugin
|
||||
|
||||
This document teaches you how to add a new modality to vLLM.
|
||||
|
||||
Each modality in vLLM is represented by a {class}`~vllm.multimodal.MultiModalPlugin` and registered to {data}`~vllm.multimodal.MULTIMODAL_REGISTRY`.
|
||||
For vLLM to recognize a new modality type, you have to create a new plugin and then pass it to {meth}`~vllm.multimodal.MultiModalRegistry.register_plugin`.
|
||||
|
||||
The remainder of this document details how to define custom {class}`~vllm.multimodal.MultiModalPlugin` s.
|
||||
|
||||
```{note}
|
||||
This article is a work in progress.
|
||||
```
|
||||
|
||||
% TODO: Add more instructions on how to add new plugins once embeddings is in.
|
@ -1,6 +0,0 @@
|
||||
# Pooling Parameters
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.PoolingParams
|
||||
:members:
|
||||
```
|
@ -1,6 +0,0 @@
|
||||
# Sampling Parameters
|
||||
|
||||
```{eval-rst}
|
||||
.. autoclass:: vllm.SamplingParams
|
||||
:members:
|
||||
```
|
@ -42,7 +42,7 @@ The first line of this example imports the classes {class}`~vllm.LLM` and {class
|
||||
from vllm import LLM, SamplingParams
|
||||
```
|
||||
|
||||
The next section defines a list of input prompts and sampling parameters for text generation. The [sampling temperature](https://arxiv.org/html/2402.05201v1) is set to `0.8` and the [nucleus sampling probability](https://en.wikipedia.org/wiki/Top-p_sampling) is set to `0.95`. You can find more information about the sampling parameters [here](https://docs.vllm.ai/en/stable/dev/sampling_params.html).
|
||||
The next section defines a list of input prompts and sampling parameters for text generation. The [sampling temperature](https://arxiv.org/html/2402.05201v1) is set to `0.8` and the [nucleus sampling probability](https://en.wikipedia.org/wiki/Top-p_sampling) is set to `0.95`. You can find more information about the sampling parameters [here](#sampling-params).
|
||||
|
||||
```python
|
||||
prompts = [
|
||||
|
@ -137,10 +137,10 @@ community/sponsors
|
||||
:caption: API Reference
|
||||
:maxdepth: 2
|
||||
|
||||
dev/sampling_params
|
||||
dev/pooling_params
|
||||
dev/offline_inference/offline_index
|
||||
dev/engine/engine_index
|
||||
api/offline_inference/index
|
||||
api/engine/index
|
||||
api/multimodal/index
|
||||
api/params
|
||||
```
|
||||
|
||||
% Design Documents: Details about vLLM internals
|
||||
@ -154,7 +154,6 @@ design/huggingface_integration
|
||||
design/plugin_system
|
||||
design/kernel/paged_attention
|
||||
design/input_processing/model_inputs_index
|
||||
design/multimodal/multimodal_index
|
||||
design/automatic_prefix_caching
|
||||
design/multiprocessing
|
||||
```
|
||||
|
@ -23,7 +23,7 @@ The available APIs depend on the type of model that is being run:
|
||||
Please refer to the above pages for more details about each API.
|
||||
|
||||
```{seealso}
|
||||
[API Reference](/dev/offline_inference/offline_index)
|
||||
[API Reference](/api/offline_inference/index)
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
@ -195,7 +195,7 @@ Code example: <gh-file:examples/online_serving/openai_completion_client.py>
|
||||
|
||||
#### Extra parameters
|
||||
|
||||
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.md) are supported.
|
||||
The following [sampling parameters](#sampling-params) are supported.
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
@ -226,7 +226,7 @@ Code example: <gh-file:examples/online_serving/openai_chat_completion_client.py>
|
||||
|
||||
#### Extra parameters
|
||||
|
||||
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.md) are supported.
|
||||
The following [sampling parameters](#sampling-params) are supported.
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
@ -259,7 +259,7 @@ Code example: <gh-file:examples/online_serving/openai_embedding_client.py>
|
||||
|
||||
#### Extra parameters
|
||||
|
||||
The following [pooling parameters (click through to see documentation)](../dev/pooling_params.md) are supported.
|
||||
The following [pooling parameters](#pooling-params) are supported.
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
@ -447,7 +447,7 @@ Response:
|
||||
|
||||
#### Extra parameters
|
||||
|
||||
The following [pooling parameters (click through to see documentation)](../dev/pooling_params.md) are supported.
|
||||
The following [pooling parameters](#pooling-params) are supported.
|
||||
|
||||
```{literalinclude} ../../../vllm/entrypoints/openai/protocol.py
|
||||
:language: python
|
||||
|
@ -49,9 +49,6 @@ class MultiModalPlugin(ABC):
|
||||
process the same data differently). This registry is in turn used by
|
||||
:class:`~MultiModalRegistry` which acts at a higher level
|
||||
(i.e., the modality of the data).
|
||||
|
||||
See also:
|
||||
:ref:`adding-multimodal-plugin`
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
|
@ -99,12 +99,6 @@ class MultiModalDataBuiltins(TypedDict, total=False):
|
||||
MultiModalDataDict: TypeAlias = Mapping[str, ModalityData[Any]]
|
||||
"""
|
||||
A dictionary containing an entry for each modality type to input.
|
||||
|
||||
Note:
|
||||
This dictionary also accepts modality keys defined outside
|
||||
:class:`MultiModalDataBuiltins` as long as a customized plugin
|
||||
is registered through the :class:`~vllm.multimodal.MULTIMODAL_REGISTRY`.
|
||||
Read more on that :ref:`here <adding-multimodal-plugin>`.
|
||||
"""
|
||||
|
||||
|
||||
|
@ -125,9 +125,6 @@ class MultiModalRegistry:
|
||||
def register_plugin(self, plugin: MultiModalPlugin) -> None:
|
||||
"""
|
||||
Register a multi-modal plugin so it can be recognized by vLLM.
|
||||
|
||||
See also:
|
||||
:ref:`adding-multimodal-plugin`
|
||||
"""
|
||||
data_type_key = plugin.get_data_key()
|
||||
|
||||
|
@ -7,7 +7,7 @@ class PoolingParams(
|
||||
msgspec.Struct,
|
||||
omit_defaults=True, # type: ignore[call-arg]
|
||||
array_like=True): # type: ignore[call-arg]
|
||||
"""Pooling parameters for embeddings API.
|
||||
"""API parameters for pooling models. This is currently a placeholder.
|
||||
|
||||
Attributes:
|
||||
additional_data: Any additional data needed for pooling.
|
||||
|
Loading…
x
Reference in New Issue
Block a user