[Core] Add fault tolerance for RayTokenizerGroupPool
(#5748)
This commit is contained in:
parent
7b99314301
commit
67882dbb44
@ -1,5 +1,7 @@
|
||||
import asyncio
|
||||
import os
|
||||
import sys
|
||||
from typing import List, Optional
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
@ -100,3 +102,100 @@ async def test_tokenizer_group_ray_pool_env_var_propagation(
|
||||
max_num_seqs=1,
|
||||
max_input_length=None)
|
||||
tokenizer_pool.ping()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("tokenizer_group_type", ["ray"])
|
||||
async def test_tokenizer_group_ray_pool_fault_tolerance(tokenizer_group_type):
|
||||
"""Test that Ray tokenizer pool group can recover from failures and
|
||||
if that's not possible, mark itself as unhealthy."""
|
||||
|
||||
class FailingTokenizerGroup(TokenizerGroup):
|
||||
|
||||
def __init__(self,
|
||||
*args,
|
||||
fail_at: Optional[List[int]] = None,
|
||||
**kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.i = 0
|
||||
self.fail_at = fail_at or []
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
self.i += 1
|
||||
if self.i in self.fail_at:
|
||||
sys.exit(1)
|
||||
return super().encode(*args, **kwargs)
|
||||
|
||||
class FailingRayTokenizerGroupPool(RayTokenizerGroupPool):
|
||||
_worker_cls = FailingTokenizerGroup
|
||||
|
||||
# Fail at first iteration
|
||||
fail_at = [1]
|
||||
tokenizer_pool_config = get_tokenizer_pool_config(tokenizer_group_type)
|
||||
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
|
||||
tokenizer_pool_config,
|
||||
tokenizer_id="gpt2",
|
||||
enable_lora=False,
|
||||
max_num_seqs=1,
|
||||
max_input_length=None,
|
||||
fail_at=fail_at)
|
||||
tokenizer_actors = tokenizer_group_pool.tokenizer_actors.copy()
|
||||
|
||||
# Modify fail at to not fail at all (will be re-read when actor is
|
||||
# re-initialized).
|
||||
fail_at[0] = 1000
|
||||
|
||||
# We should recover successfully.
|
||||
await tokenizer_group_pool.encode_async(request_id="1",
|
||||
prompt="prompt",
|
||||
lora_request=None)
|
||||
await tokenizer_group_pool.encode_async(request_id="1",
|
||||
prompt="prompt",
|
||||
lora_request=None)
|
||||
|
||||
# Check that we have a new actor
|
||||
assert len(tokenizer_group_pool.tokenizer_actors) == len(tokenizer_actors)
|
||||
assert tokenizer_group_pool.tokenizer_actors != tokenizer_actors
|
||||
|
||||
# Fail at first iteration
|
||||
fail_at = [1]
|
||||
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
|
||||
tokenizer_pool_config,
|
||||
tokenizer_id="gpt2",
|
||||
enable_lora=False,
|
||||
max_num_seqs=1,
|
||||
max_input_length=None,
|
||||
fail_at=fail_at)
|
||||
|
||||
# We should fail after re-initialization.
|
||||
with pytest.raises(RuntimeError):
|
||||
await tokenizer_group_pool.encode_async(request_id="1",
|
||||
prompt="prompt",
|
||||
lora_request=None)
|
||||
|
||||
# check_health should raise the same thing
|
||||
with pytest.raises(RuntimeError):
|
||||
tokenizer_group_pool.check_health()
|
||||
|
||||
# Ensure that non-ActorDiedErrors are still propagated correctly and do not
|
||||
# cause a re-initialization.
|
||||
fail_at = []
|
||||
tokenizer_group_pool = FailingRayTokenizerGroupPool.from_config(
|
||||
tokenizer_pool_config,
|
||||
tokenizer_id="gpt2",
|
||||
enable_lora=False,
|
||||
max_num_seqs=1,
|
||||
max_input_length=2,
|
||||
fail_at=fail_at)
|
||||
tokenizer_actors = tokenizer_group_pool.tokenizer_actors.copy()
|
||||
|
||||
# Prompt too long error
|
||||
with pytest.raises(ValueError):
|
||||
await tokenizer_group_pool.encode_async(request_id="1",
|
||||
prompt="prompt" * 100,
|
||||
lora_request=None)
|
||||
await tokenizer_group_pool.encode_async(request_id="1",
|
||||
prompt="prompt",
|
||||
lora_request=None)
|
||||
# Actors should stay the same.
|
||||
assert tokenizer_group_pool.tokenizer_actors == tokenizer_actors
|
||||
|
@ -310,6 +310,8 @@ class _AsyncLLMEngine(LLMEngine):
|
||||
)
|
||||
|
||||
async def check_health_async(self) -> None:
|
||||
if self.tokenizer:
|
||||
self.tokenizer.check_health()
|
||||
self.model_executor.check_health()
|
||||
|
||||
|
||||
|
@ -1013,6 +1013,8 @@ class LLMEngine:
|
||||
return self.model_executor.pin_lora(lora_id)
|
||||
|
||||
def check_health(self) -> None:
|
||||
if self.tokenizer:
|
||||
self.tokenizer.check_health()
|
||||
self.model_executor.check_health()
|
||||
|
||||
def is_tracing_enabled(self) -> bool:
|
||||
|
@ -53,3 +53,7 @@ class BaseTokenizerGroup(ABC):
|
||||
) -> "PreTrainedTokenizer":
|
||||
"""Get a tokenizer for a LoRA request."""
|
||||
pass
|
||||
|
||||
def check_health(self):
|
||||
"""Raise exception if the tokenizer group is unhealthy."""
|
||||
return
|
||||
|
@ -2,17 +2,21 @@ import asyncio
|
||||
import os
|
||||
from typing import List, Optional
|
||||
|
||||
from ray.exceptions import ActorDiedError
|
||||
from ray.util.scheduling_strategies import NodeAffinitySchedulingStrategy
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
from vllm.config import TokenizerPoolConfig
|
||||
from vllm.executor.ray_utils import ray
|
||||
from vllm.logger import init_logger
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.transformers_utils.tokenizer_group.base_tokenizer_group import (
|
||||
BaseTokenizerGroup)
|
||||
from vllm.transformers_utils.tokenizer_group.tokenizer_group import (
|
||||
TokenizerGroup)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class RayTokenizerGroupPool(BaseTokenizerGroup):
|
||||
"""A Ray-based pool of TokenizerGroups for async tokenization."""
|
||||
@ -46,24 +50,28 @@ class RayTokenizerGroupPool(BaseTokenizerGroup):
|
||||
ray_actor_options: dict, **tokenizer_config):
|
||||
# Store a local copy of the TokenizerGroup for quick access
|
||||
# to underlying HF tokenizers.
|
||||
self._tokenizer_config = {
|
||||
"tokenizer_id": tokenizer_id,
|
||||
"enable_lora": enable_lora,
|
||||
"max_num_seqs": max_num_seqs,
|
||||
"max_input_length": max_input_length,
|
||||
**tokenizer_config
|
||||
}
|
||||
self._local_tokenizer_group = self._worker_cls(
|
||||
tokenizer_id=tokenizer_id,
|
||||
enable_lora=enable_lora,
|
||||
max_num_seqs=max_num_seqs,
|
||||
max_input_length=max_input_length,
|
||||
**tokenizer_config,
|
||||
)
|
||||
**self._tokenizer_config, )
|
||||
|
||||
ray_tokenizer_group_cls = ray.remote(
|
||||
self._ray_tokenizer_group_cls = ray.remote(
|
||||
self._worker_cls).options(**ray_actor_options)
|
||||
self.tokenizer_actors = [
|
||||
ray_tokenizer_group_cls.remote(tokenizer_id, enable_lora,
|
||||
max_num_seqs, max_input_length,
|
||||
**tokenizer_config)
|
||||
for _ in range(num_actors)
|
||||
]
|
||||
self.tokenizer_actors = [self._init_actor() for _ in range(num_actors)]
|
||||
self._idle_actors: Optional[asyncio.Queue] = None
|
||||
|
||||
# If set, actor is unhealthy. Will reraise on the next
|
||||
# check_health call.
|
||||
self._exception: Optional[ActorDiedError] = None
|
||||
|
||||
def _init_actor(self) -> ray.ObjectRef:
|
||||
return self._ray_tokenizer_group_cls.remote(**self._tokenizer_config)
|
||||
|
||||
@property
|
||||
def pool_size(self) -> int:
|
||||
return len(self.tokenizer_actors)
|
||||
@ -78,6 +86,22 @@ class RayTokenizerGroupPool(BaseTokenizerGroup):
|
||||
for actor in self.tokenizer_actors:
|
||||
self._idle_actors.put_nowait(actor)
|
||||
|
||||
def _finalize_encode(self, actor: ray.ObjectRef,
|
||||
original_actor: ray.ObjectRef, actor_is_alive: bool):
|
||||
assert self._idle_actors is not None
|
||||
# Cleanup the dead actor.
|
||||
if not actor_is_alive or original_actor is not actor:
|
||||
self.tokenizer_actors.remove(original_actor)
|
||||
if actor_is_alive:
|
||||
# Put the actor back in the queue.
|
||||
# This is done in a finally block to ensure that the actor is
|
||||
# always put back in the queue, even if an exception/cancellation
|
||||
# is raised.
|
||||
self._idle_actors.put_nowait(actor)
|
||||
# Add back the new actor.
|
||||
if original_actor is not actor:
|
||||
self.tokenizer_actors.append(actor)
|
||||
|
||||
def encode(self,
|
||||
prompt: str,
|
||||
request_id: Optional[str] = None,
|
||||
@ -88,23 +112,41 @@ class RayTokenizerGroupPool(BaseTokenizerGroup):
|
||||
The actor is then put back in the queue for future use.
|
||||
This is blocking.
|
||||
"""
|
||||
self.check_health()
|
||||
self._ensure_queue_initialized()
|
||||
assert self._idle_actors is not None
|
||||
|
||||
if self._idle_actors.empty():
|
||||
raise RuntimeError("No idle actors available.")
|
||||
actor = self._idle_actors.get_nowait()
|
||||
actor_is_alive = True
|
||||
original_actor = actor
|
||||
try:
|
||||
ret = ray.get(
|
||||
actor.encode.remote(request_id=request_id,
|
||||
prompt=prompt,
|
||||
lora_request=lora_request))
|
||||
except ActorDiedError as e:
|
||||
# If the actor is dead, we first try to reinitialize it.
|
||||
logger.warning("%s died with ActorDiedError, reinitializing.",
|
||||
actor,
|
||||
exc_info=e)
|
||||
actor = self._init_actor()
|
||||
try:
|
||||
ret = ray.get(
|
||||
actor.encode.remote(request_id=request_id,
|
||||
prompt=prompt,
|
||||
lora_request=lora_request))
|
||||
except ActorDiedError as e:
|
||||
logger.error(
|
||||
"%s died for second time in a row, marking "
|
||||
"RayTokenizerGroupPool as unhealthy.", actor)
|
||||
actor_is_alive = False
|
||||
if not self._exception:
|
||||
self._exception = e
|
||||
self.check_health()
|
||||
finally:
|
||||
# Put the actor back in the queue.
|
||||
# This is done in a finally block to ensure that the actor is
|
||||
# always put back in the queue, even if an exception/cancellation
|
||||
# is raised.
|
||||
self._idle_actors.put_nowait(actor)
|
||||
self._finalize_encode(actor, original_actor, actor_is_alive)
|
||||
return ret
|
||||
|
||||
async def encode_async(
|
||||
@ -120,20 +162,37 @@ class RayTokenizerGroupPool(BaseTokenizerGroup):
|
||||
The actor is then put back in the queue for future use.
|
||||
This is non-blocking.
|
||||
"""
|
||||
self.check_health()
|
||||
self._ensure_queue_initialized()
|
||||
assert self._idle_actors is not None
|
||||
|
||||
actor = await self._idle_actors.get()
|
||||
actor_is_alive = True
|
||||
original_actor = actor
|
||||
try:
|
||||
ret = await actor.encode.remote(request_id=request_id,
|
||||
prompt=prompt,
|
||||
lora_request=lora_request)
|
||||
except ActorDiedError as e:
|
||||
# If the actor is dead, we first try to reinitialize it.
|
||||
logger.warning("%s died with ActorDiedError, reinitializing.",
|
||||
actor,
|
||||
exc_info=e)
|
||||
actor = self._init_actor()
|
||||
try:
|
||||
ret = await actor.encode.remote(request_id=request_id,
|
||||
prompt=prompt,
|
||||
lora_request=lora_request)
|
||||
except ActorDiedError as e:
|
||||
logger.error(
|
||||
"%s died for second time in a row, marking "
|
||||
"RayTokenizerGroupPool as unhealthy.", actor)
|
||||
actor_is_alive = False
|
||||
if not self._exception:
|
||||
self._exception = e
|
||||
self.check_health()
|
||||
finally:
|
||||
# Put the actor back in the queue.
|
||||
# This is done in a finally block to ensure that the actor is
|
||||
# always put back in the queue, even if an exception/cancellation
|
||||
# is raised.
|
||||
self._idle_actors.put_nowait(actor)
|
||||
self._finalize_encode(actor, original_actor, actor_is_alive)
|
||||
return ret
|
||||
|
||||
def get_max_input_len(self,
|
||||
@ -155,6 +214,11 @@ class RayTokenizerGroupPool(BaseTokenizerGroup):
|
||||
return await self._local_tokenizer_group.get_lora_tokenizer_async(
|
||||
lora_request)
|
||||
|
||||
def check_health(self):
|
||||
if self._exception:
|
||||
raise RuntimeError(
|
||||
"TokenizerGroupPool is unhealthy.") from self._exception
|
||||
|
||||
|
||||
def _carry_over_env_vars_to_runtime_env(runtime_env: dict) -> None:
|
||||
"""Copy over all current process environment variables to the runtime_env.
|
||||
|
Loading…
x
Reference in New Issue
Block a user