[core][torch.compile] discard the compile for profiling (#7796)
This commit is contained in:
parent
39178c7fbc
commit
64cc644425
@ -12,5 +12,4 @@ remove_docker_container
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
# Run a simple end-to-end example.
|
||||
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu \
|
||||
python3 /workspace/vllm/examples/offline_inference_tpu.py
|
||||
docker run --privileged --net host --shm-size=16G -it -e HF_TOKEN=$HF_TOKEN --name tpu-test vllm-tpu /bin/bash -c "python3 -m pip install git+https://github.com/thuml/depyf.git && python3 /workspace/vllm/tests/tpu/test_compilation.py && python3 /workspace/vllm/examples/offline_inference_tpu.py"
|
||||
|
34
tests/tpu/test_compilation.py
Normal file
34
tests/tpu/test_compilation.py
Normal file
@ -0,0 +1,34 @@
|
||||
import glob
|
||||
import os
|
||||
import runpy
|
||||
import tempfile
|
||||
|
||||
import depyf
|
||||
|
||||
temp_dir = tempfile.mkdtemp()
|
||||
with depyf.prepare_debug(temp_dir):
|
||||
cur_dir = os.path.dirname(__file__)
|
||||
parent_dir = os.path.dirname(cur_dir)
|
||||
root_dir = os.path.dirname(parent_dir)
|
||||
example_file = os.path.join(root_dir, "examples",
|
||||
"offline_inference_tpu.py")
|
||||
runpy.run_path(example_file)
|
||||
|
||||
compiled_code = sorted(
|
||||
glob.glob(os.path.join(temp_dir, "__transformed_code*.py")))
|
||||
full_code = glob.glob(os.path.join(temp_dir, "full_code*.py"))[0]
|
||||
# we should only trigger Dynamo compilation three times:
|
||||
# one for the profiling phase (and the compiled artifact will be discarded)
|
||||
# one for the prefill phase with symbolic shapes
|
||||
# one for the decode phase with symbolic shapes
|
||||
# and later calls should not trigger Dynamo compilation again.
|
||||
# NOTE: it might still trigger XLA compilation.
|
||||
|
||||
# check we have three compiled code
|
||||
assert len(compiled_code) == 3
|
||||
|
||||
# check the first compilation is discarded
|
||||
with open(full_code) as f:
|
||||
full_code_content = f.read()
|
||||
profile_function = compiled_code[0].split(".")[0]
|
||||
assert profile_function not in full_code_content
|
@ -1097,6 +1097,10 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
|
||||
device=self.device)
|
||||
self.execute_model(model_input, kv_caches, intermediate_tensors)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
# reset and discard the guard and compiled bytecode for profiling runs
|
||||
torch._dynamo.reset()
|
||||
|
||||
return
|
||||
|
||||
def remove_all_loras(self):
|
||||
|
@ -143,6 +143,10 @@ class TPUWorker(LoraNotSupportedWorkerBase, LocalOrDistributedWorkerBase):
|
||||
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
|
||||
block_size_bytes)
|
||||
num_cpu_blocks = (num_cpu_blocks // 8) * 8 # Round down to 8.
|
||||
|
||||
# reset and discard the guard and compiled bytecode for profiling runs
|
||||
torch._dynamo.reset()
|
||||
|
||||
return num_tpu_blocks, num_cpu_blocks
|
||||
|
||||
def initialize_cache(
|
||||
|
Loading…
x
Reference in New Issue
Block a user