[misc] Add LoRA kernel micro benchmarks (#11579)

This commit is contained in:
Varun Sundar Rabindranath 2025-01-16 21:21:40 +05:30 committed by GitHub
parent 874f7c292a
commit 5fd24ec02e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 1357 additions and 0 deletions

File diff suppressed because it is too large Load Diff

210
benchmarks/kernels/utils.py Normal file
View File

@ -0,0 +1,210 @@
import dataclasses
from typing import Any, Callable, Iterable, Optional
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
@dataclasses.dataclass
class CudaGraphBenchParams:
num_ops_in_cuda_graph: int
@dataclasses.dataclass
class ArgPool:
"""
When some argument of the benchmarking function is annotated with this type,
the benchmarking class (BenchMM) will collapse the argument to a pick a
single value from the given list of values, during function invocation.
For every invocation during a benchmarking run, it will choose a
different value from the list.
"""
values: Iterable[Any]
def __getitem__(self, index):
return self.values[index]
class Bench:
class ArgsIterator:
def __init__(self, args_list, kwargs_list):
assert len(args_list) == len(kwargs_list)
self.args_list = args_list
self.kwargs_list = kwargs_list
self.n = len(self.args_list)
self.idx = 0
def __next__(self):
while True:
yield (self.args_list[self.idx], self.kwargs_list[self.idx])
self.idx += 1
self.idx = self.idx % self.n
def reset(self):
self.idx = 0
@property
def n_args(self):
return self.n
def __init__(self, cuda_graph_params: Optional[CudaGraphBenchParams],
label: str, sub_label: str, description: str, fn: Callable,
*args, **kwargs):
self.cuda_graph_params = cuda_graph_params
self.use_cuda_graph = self.cuda_graph_params is not None
self.label = label
self.sub_label = sub_label
self.description = description
self.fn = fn
# Process args
self._args = args
self._kwargs = kwargs
self.args_list, self.kwargs_list = self.collapse_argpool(
*args, **kwargs)
self.args_iterator = self.ArgsIterator(self.args_list,
self.kwargs_list)
# Cudagraph runner
self.g = None
if self.use_cuda_graph:
self.g = self.get_cuda_graph_runner()
# benchmark run params
self.min_run_time = 1
def collapse_argpool(self, *args, **kwargs):
argpool_args = [arg for arg in args if isinstance(arg, ArgPool)] + [
arg for arg in kwargs.values() if isinstance(arg, ArgPool)
]
if len(argpool_args) == 0:
return [args], [kwargs]
# Make sure all argpools are of the same size
argpool_size = len(argpool_args[0].values)
assert all([argpool_size == len(arg.values) for arg in argpool_args])
# create copies of the args
args_list = []
kwargs_list = []
for _ in range(argpool_size):
args_list.append(args)
kwargs_list.append(kwargs.copy())
for i in range(argpool_size):
# collapse args; Just pick the ith value
args_list[i] = tuple([
arg[i] if isinstance(arg, ArgPool) else arg
for arg in args_list[i]
])
# collapse kwargs
kwargs_i = kwargs_list[i]
arg_pool_keys = [
k for k, v in kwargs_i.items() if isinstance(v, ArgPool)
]
for k in arg_pool_keys:
# again just pick the ith value
kwargs_i[k] = kwargs_i[k][i]
kwargs_list[i] = kwargs_i
return args_list, kwargs_list
def get_cuda_graph_runner(self):
assert self.use_cuda_graph
assert self.args_iterator is not None
num_graph_ops = self.cuda_graph_params.num_ops_in_cuda_graph
# warmup
args_it = self.args_iterator.__next__()
for _ in range(2):
args, kwargs = next(args_it)
self.fn(*args, **kwargs)
self.args_iterator.reset()
args_it = self.args_iterator.__next__()
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
for _ in range(num_graph_ops):
args, kwargs = next(args_it)
self.fn(*args, **kwargs)
return g
def run_cudagrah(self) -> TMeasurement:
assert self.use_cuda_graph
globals = {'g': self.g}
return TBenchmark.Timer(
stmt="g.replay()",
globals=globals,
label=(
f"{self.label}"
f" | cugraph {self.cuda_graph_params.num_ops_in_cuda_graph} ops"
),
sub_label=self.sub_label,
description=self.description,
).blocked_autorange(min_run_time=self.min_run_time)
def run_eager(self) -> TMeasurement:
setup = None
stmt = None
globals = None
has_arg_pool = self.args_iterator.n_args > 1
if has_arg_pool:
setup = '''
args_iterator.reset()
args_it = args_iterator.__next__()
'''
stmt = '''
args, kwargs = next(args_it)
fn(*args, **kwargs)
'''
globals = {'fn': self.fn, 'args_iterator': self.args_iterator}
else:
# no arg pool. Just use the args and kwargs directly
self.args_iterator.reset()
args_it = self.args_iterator.__next__()
args, kwargs = next(args_it)
setup = ""
stmt = '''
fn(*args, **kwargs)
'''
globals = {'fn': self.fn, 'args': args, 'kwargs': kwargs}
return TBenchmark.Timer(
stmt=stmt,
setup=setup,
globals=globals,
label=self.label,
sub_label=self.sub_label,
description=self.description,
).blocked_autorange(min_run_time=self.min_run_time)
def run(self) -> TMeasurement:
timer = None
if self.use_cuda_graph: # noqa SIM108
timer = self.run_cudagrah()
else:
timer = self.run_eager()
if not timer.meets_confidence() or timer.has_warnings:
print("Doesn't meet confidence - re-running bench ...")
return self.run()
return timer
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
if exc_type:
print(f"exc type {exc_type}")
print(f"exc value {exc_value}")
print(f"exc traceback {traceback}")