[V1][VLM][Pixtral-HF] Support Pixtral-HF on V1 (#14275)

Signed-off-by: Linkun Chen <github@lkchen.net>
This commit is contained in:
lkchen 2025-03-06 00:58:41 -08:00 committed by GitHub
parent 1769928079
commit 5d802522a7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 175 additions and 16 deletions

View File

@ -866,7 +866,7 @@ See [this page](#generative-models) for more information on how to use generativ
- * `PixtralForConditionalGeneration`
* Pixtral
* T + I<sup>+</sup>
* `mistralai/Pixtral-12B-2409`, `mistral-community/pixtral-12b` (see note), etc.
* `mistralai/Pixtral-12B-2409`, `mistral-community/pixtral-12b`, etc.
*
* ✅︎
* ✅︎
@ -930,10 +930,6 @@ For more details, please see: <gh-pr:4087#issuecomment-2250397630>
Currently the PaliGemma model series is implemented without PrefixLM attention mask. This model series may be deprecated in a future release.
:::
:::{note}
`mistral-community/pixtral-12b` does not support V1 yet.
:::
:::{note}
To use Qwen2.5-VL series models, you have to install Hugging Face Transformers library from source via `pip install git+https://github.com/huggingface/transformers`.
:::

View File

@ -4,7 +4,7 @@ from abc import abstractmethod
from collections.abc import Iterable, Mapping, Sequence
from functools import cached_property
from typing import (Final, List, Literal, Optional, Protocol, Set, Tuple,
TypedDict, TypeVar, Union)
TypedDict, TypeVar, Union, cast)
import torch
import torch.nn as nn
@ -35,6 +35,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
PromptReplacement, PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.sequence import IntermediateTensors
from vllm.utils import JSONTree, flatten_2d_lists, json_map_leaves
from .clip import CLIPVisionModel
from .interfaces import SupportsMultiModal, SupportsPP
@ -56,6 +57,25 @@ class LlavaImagePixelInputs(TypedDict):
in which case the data is passed as a list instead of a batched tensor.
"""
feat_is_patch: Union[torch.Tensor, List[torch.Tensor]]
"""
A boolean mask indicating which image features correspond
to patch tokens.
Shape: `(batch_size, num_crops, num_patch)`
"""
embed_is_patch: Union[torch.Tensor, List[torch.Tensor]]
"""
A boolean mask indicating which image embeddings correspond
to patch tokens.
Shape: `(batch_size, num_embeds)`
"""
num_crops: torch.Tensor
"""Shape: `(batch_size, num_images)`"""
class LlavaImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
@ -65,6 +85,25 @@ class LlavaImageEmbeddingInputs(TypedDict):
`hidden_size` must match the hidden size of language model backbone.
"""
feat_is_patch: Union[torch.Tensor, List[torch.Tensor]]
"""
A boolean mask indicating which image features correspond
to patch tokens.
Shape: `(batch_size, num_crops, num_patch)`
"""
embed_is_patch: Union[torch.Tensor, List[torch.Tensor]]
"""
A boolean mask indicating which image embeddings correspond
to patch tokens.
Shape: `(batch_size, num_embeds)`
"""
num_crops: torch.Tensor
"""Shape: `(batch_size, num_images)`"""
LlavaImageInputs = Union[LlavaImagePixelInputs, LlavaImageEmbeddingInputs]
@ -317,6 +356,26 @@ class PixtralHFMultiModalProcessor(
for p, (h, w) in zip(pixel_values, image_sizes)
]
hf_config = self.info.get_hf_config()
tile_sizes = [
get_pixtral_hf_image_feature_grid_size(
hf_config.vision_config,
image_width=pixel_value.shape[-1],
image_height=pixel_value.shape[-2])
for pixel_value in processed_outputs["pixel_values"]
]
num_crops = torch.tensor([(ncols + 1) * nrows
for ncols, nrows in tile_sizes])
# Each image may result to masks of different sizes, so we need to
# flatten the list and later use `num_crops` to get per-image masks.
embed_is_patch = torch.tensor(
flatten_2d_lists([([True] * ncols + [False]) * nrows
for ncols, nrows in tile_sizes]))
processed_outputs["num_crops"] = num_crops
processed_outputs["embed_is_patch"] = embed_is_patch
processed_outputs["feat_is_patch"] = embed_is_patch
return processed_outputs
def _get_mm_fields_config(
@ -324,7 +383,13 @@ class PixtralHFMultiModalProcessor(
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_crops = hf_inputs.get("num_crops", torch.empty(0)).view(-1)
return dict(
feat_is_patch=MultiModalFieldConfig.flat_from_sizes(
"image", num_crops),
embed_is_patch=MultiModalFieldConfig.flat_from_sizes(
"image", num_crops),
num_crops=MultiModalFieldConfig.batched("image"),
pixel_values=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
@ -562,6 +627,23 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
if pixel_values is None and image_embeds is None:
return None
feat_is_patch = kwargs.pop("feat_is_patch", None)
if feat_is_patch is not None and not isinstance(
feat_is_patch, (torch.Tensor, list)):
raise ValueError("Incorrect type of feat_is_patch. "
f"Got type: {type(feat_is_patch)}")
embed_is_patch = kwargs.pop("embed_is_patch", None)
if embed_is_patch is not None and not isinstance(
embed_is_patch, (torch.Tensor, list)):
raise ValueError("Incorrect type of embed_is_patch. "
f"Got type: {type(embed_is_patch)}")
num_crops = kwargs.pop("num_crops", None)
if num_crops is not None and not isinstance(num_crops, torch.Tensor):
raise ValueError("Incorrect type of num_crops. "
f"Got type: {type(num_crops)}")
if pixel_values is not None:
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
@ -571,12 +653,18 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
return LlavaImagePixelInputs(
type="pixel_values",
data=flatten_bn(pixel_values),
feat_is_patch=feat_is_patch,
embed_is_patch=embed_is_patch,
num_crops=num_crops,
)
return LlavaImagePixelInputs(
type="pixel_values",
data=self._validate_pixel_values(
flatten_bn(pixel_values, concat=True)),
feat_is_patch=feat_is_patch,
embed_is_patch=embed_is_patch,
num_crops=num_crops,
)
if image_embeds is not None:
@ -587,6 +675,9 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
return LlavaImageEmbeddingInputs(
type="image_embeds",
data=flatten_bn(image_embeds, concat=True),
feat_is_patch=feat_is_patch,
embed_is_patch=embed_is_patch,
num_crops=num_crops,
)
raise AssertionError("This line should be unreachable.")
@ -633,16 +724,74 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
assert self.vision_tower is not None
image_features = self._process_image_pixels(image_input)
if isinstance(image_features, torch.Tensor):
return self.multi_modal_projector(image_features)
def get_multimodal_embeddings(
self, **kwargs
) -> Union[list[torch.Tensor], torch.Tensor, tuple[torch.Tensor, ...]]:
feature_sizes = [
image_feature.shape[0] for image_feature in image_features
]
image_embeds = self.multi_modal_projector(torch.cat(image_features))
image_embeds = torch.split(image_embeds, feature_sizes)
return image_embeds
def _get_mm_embeds(
self,
features: torch.Tensor, # Shape: (num_crop, num_patch, d)
feat_is_patch: torch.Tensor, # Shape: (num_crop, num_patch)
num_crops: torch.Tensor, # Shape: (num_images,)
embed_is_patch: torch.Tensor, # Shape: (num_embeds,)
) -> list[torch.Tensor]:
"""Scatter the patch features into a contiguous tensor that corresponds
to the embedding tokens defined by the multimodal processor.
Mostly copied from `Molmo._get_mm_embeds`. See following fixme comment.
"""
# Insert columns of nan values according to `feat_is_patch`. This work
# ideally should be done in `_process_image_input`, but
# `_process_image_input` is used in both V0 and V1 path. It's safer to
# put the logic here.
# FIXME: Move this logic to `_process_image_input` when v0 is
# deprecated. Merge this function with `Molmo._get_mm_embeds`.
feat_is_patch = feat_is_patch.view(-1)
embed_is_patch = embed_is_patch.view(-1)
expanded_embedding = torch.full(
(sum(num_crops), *features.shape[1:]),
torch.nan,
dtype=features.dtype).to(features.device)
expanded_embedding[feat_is_patch] = features
num_crops_per_image = num_crops.tolist()
feats_per_image = expanded_embedding.split(num_crops_per_image)
f_is_patch_per_image = feat_is_patch.split(num_crops_per_image)
embed_dim = expanded_embedding.shape[-1]
num_embeds = embed_is_patch.shape[0]
embeds_in_batch = list[torch.Tensor]()
for feats, f_is_patch in zip(feats_per_image, f_is_patch_per_image):
embeds = feats.new_full((num_embeds, embed_dim), torch.nan)
embeds[embed_is_patch] = feats[f_is_patch]
embeds_in_batch.append(embeds)
return embeds_in_batch
def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
vision_embeddings = self._process_image_input(image_input)
if kwargs.get("v0_path", False):
return vision_embeddings
else:
nested_emb = [
self._get_mm_embeds(*args) for args in zip(
vision_embeddings, image_input["feat_is_patch"],
image_input["num_crops"], image_input["embed_is_patch"])
]
return flatten_2d_lists(nested_emb)
def get_input_embeddings(
self,
@ -651,8 +800,15 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
# Extract the patch tokens
patch_embeddings = json_map_leaves(
lambda x: x[~x.isnan()].view(-1, *x.shape[1:]),
cast(JSONTree[torch.Tensor], multimodal_embeddings),
)
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
input_ids, inputs_embeds, cast(NestedTensors,
patch_embeddings),
self.config.image_token_index)
return inputs_embeds
@ -705,6 +861,7 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
kwargs.update({"v0_path": True})
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)

View File

@ -1484,8 +1484,8 @@ class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA,
img_patch_id = kwargs.pop("img_patch_id", None)
if not isinstance(img_patch_id, torch.Tensor):
raise ValueError("Incorrect type of num_crops. "
f"Got type: {type(num_crops)}")
raise ValueError("Incorrect type of img_patch_id. "
f"Got type: {type(img_patch_id)}")
self.img_patch_id = img_patch_id.flatten().unique().item()
return MolmoImageInputs(

View File

@ -1042,9 +1042,13 @@ class PixtralHFVisionModel(nn.Module):
for img in pixel_values
]
patch_embeds = [
p.flatten(2).permute(0, 2, 1) for p in patch_embeds_list
]
embed_sizes = [p.shape[1] for p in patch_embeds]
# flatten to a single sequence
patch_embeds = torch.cat(
[p.flatten(2).permute(0, 2, 1) for p in patch_embeds_list], dim=1)
patch_embeds = torch.cat(patch_embeds, dim=1)
patch_embeds = self.ln_pre(patch_embeds)
# positional embeddings
@ -1075,6 +1079,8 @@ class PixtralHFVisionModel(nn.Module):
out = resolve_visual_encoder_outputs(out, feature_sample_layers, None,
self.config.num_hidden_layers)
# squeeze dim 0 and split into separate tensors for each image
out = torch.split(torch.squeeze(out), embed_sizes)
return out
# (TODO) Add prefix argument for filtering out weights to be loaded