[Benchmarks] Make detokenization optional in benchmark scripts (#11697)
Signed-off-by: Jeremy Arnold <Jeremy.Arnold@amd.com>
This commit is contained in:
parent
f7ebad2307
commit
58abe35455
@ -52,6 +52,7 @@ def main(args: argparse.Namespace):
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize,
|
||||
)
|
||||
print(sampling_params)
|
||||
dummy_prompt_token_ids = np.random.randint(10000,
|
||||
@ -173,6 +174,12 @@ if __name__ == "__main__":
|
||||
default=None,
|
||||
help="Path to save the latency results in JSON format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
@ -194,7 +194,9 @@ def main(args):
|
||||
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
|
||||
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
|
||||
sampling_params = SamplingParams(temperature=0,
|
||||
max_tokens=args.output_len,
|
||||
detokenize=not args.disable_detokenize)
|
||||
|
||||
print("Testing filtered requests")
|
||||
prompts = repeat_and_sort_requests(filtered_requests,
|
||||
@ -243,6 +245,12 @@ if __name__ == "__main__":
|
||||
"subtract this length when filtering prompts. Only used "
|
||||
"when dataset-path is not provided.",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
@ -23,7 +23,7 @@ def sample_requests(
|
||||
num_requests: int,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
fixed_output_len: Optional[int],
|
||||
) -> list[tuple[str, int, int]]:
|
||||
) -> list[tuple[str, int, int, int]]:
|
||||
if fixed_output_len is not None and fixed_output_len < 4:
|
||||
raise ValueError("output_len too small")
|
||||
|
||||
@ -71,6 +71,7 @@ def run_vllm(
|
||||
requests: list[tuple[str, int, int]],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
@ -95,6 +96,7 @@ def run_vllm(
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
|
||||
start = time.perf_counter()
|
||||
@ -121,7 +123,8 @@ def main(args: argparse.Namespace):
|
||||
|
||||
if args.backend == "vllm":
|
||||
elapsed_time = run_vllm(requests, args.n,
|
||||
EngineArgs.from_cli_args(args))
|
||||
EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
else:
|
||||
raise ValueError(f"Unknown backend: {args.backend}")
|
||||
total_num_tokens = sum(prompt_len + output_len
|
||||
@ -174,6 +177,12 @@ if __name__ == "__main__":
|
||||
type=str,
|
||||
default=None,
|
||||
help='Path to save the throughput results in JSON format.')
|
||||
parser.add_argument(
|
||||
'--disable-detokenize',
|
||||
action='store_true',
|
||||
help=("Do not detokenize responses (i.e. do not include "
|
||||
"detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
@ -168,6 +168,7 @@ def run_vllm(
|
||||
requests: list[SampleRequest],
|
||||
n: int,
|
||||
engine_args: EngineArgs,
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
from vllm import LLM, SamplingParams
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
@ -194,6 +195,7 @@ def run_vllm(
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
lora_requests: Optional[list[LoRARequest]] = None
|
||||
if engine_args.enable_lora:
|
||||
@ -232,6 +234,7 @@ async def run_vllm_async(
|
||||
n: int,
|
||||
engine_args: AsyncEngineArgs,
|
||||
disable_frontend_multiprocessing: bool = False,
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
from vllm import SamplingParams
|
||||
|
||||
@ -262,6 +265,7 @@ async def run_vllm_async(
|
||||
top_p=1.0,
|
||||
ignore_eos=True,
|
||||
max_tokens=request.expected_output_len,
|
||||
detokenize=not disable_detokenize,
|
||||
))
|
||||
lora_requests.append(request.lora_request)
|
||||
|
||||
@ -288,6 +292,7 @@ def run_hf(
|
||||
n: int,
|
||||
max_batch_size: int,
|
||||
trust_remote_code: bool,
|
||||
disable_detokenize: bool = False,
|
||||
) -> float:
|
||||
llm = AutoModelForCausalLM.from_pretrained(
|
||||
model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
|
||||
@ -327,6 +332,7 @@ def run_hf(
|
||||
use_cache=True,
|
||||
max_new_tokens=max_output_len,
|
||||
)
|
||||
if not disable_detokenize:
|
||||
# Include the decoding time.
|
||||
tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
|
||||
pbar.update(len(batch))
|
||||
@ -440,14 +446,17 @@ def main(args: argparse.Namespace):
|
||||
args.n,
|
||||
AsyncEngineArgs.from_cli_args(args),
|
||||
args.disable_frontend_multiprocessing,
|
||||
args.disable_detokenize,
|
||||
))
|
||||
else:
|
||||
elapsed_time = run_vllm(requests, args.n,
|
||||
EngineArgs.from_cli_args(args))
|
||||
EngineArgs.from_cli_args(args),
|
||||
args.disable_detokenize)
|
||||
elif args.backend == "hf":
|
||||
assert args.tensor_parallel_size == 1
|
||||
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
|
||||
args.hf_max_batch_size, args.trust_remote_code)
|
||||
args.hf_max_batch_size, args.trust_remote_code,
|
||||
args.disable_detokenize)
|
||||
elif args.backend == "mii":
|
||||
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
|
||||
args.output_len)
|
||||
@ -526,6 +535,11 @@ if __name__ == "__main__":
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Disable decoupled async engine frontend.")
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize the response (i.e. do not include "
|
||||
"detokenization time in the measurement)"))
|
||||
# LoRA
|
||||
parser.add_argument(
|
||||
"--lora-path",
|
||||
|
Loading…
x
Reference in New Issue
Block a user