[Model] Changes to MLPSpeculator to support tie_weights and input_scale (#5965)

Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Joshua Rosenkranz <jmrosenk@us.ibm.com>
This commit is contained in:
Thomas Parnell 2024-07-02 01:40:02 +02:00 committed by GitHub
parent e373853e12
commit 54600709b6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 79 additions and 23 deletions

View File

@ -13,6 +13,8 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs import MLPSpeculatorConfig
SQRT2 = 2**0.5
class MLPSpeculatorLayerNorm(nn.Module):
"""
@ -26,24 +28,30 @@ class MLPSpeculatorLayerNorm(nn.Module):
Safety term to prevent division by zero. Make sure the chosen value
fits in the range of your encoding scheme
(i.e. fp16 requires eps >= 6e-8).
elementwise_scale_and_shift : bool
Include a learned scaling and shift term after normalization.
"""
def __init__(
self,
normalized_shape,
eps=1e-06,
elementwise_scale_and_shift=True,
):
super(MLPSpeculatorLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.empty(normalized_shape))
self.bias = nn.Parameter(torch.empty(normalized_shape))
self.elementwise_scale_and_shift = elementwise_scale_and_shift
if self.elementwise_scale_and_shift:
self.weight = nn.Parameter(torch.empty(normalized_shape))
self.bias = nn.Parameter(torch.empty(normalized_shape))
self.eps = eps
def forward(self, x):
xf = x
xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps)
x = xf.type_as(x)
x = self.weight * x
x = x + self.bias
if self.elementwise_scale_and_shift:
x = self.weight * x
x = x + self.bias
return x
@ -59,27 +67,60 @@ class MLPSpeculator(nn.Module):
self.max_speculative_tokens = config.num_lookahead_tokens
self.emb = nn.ModuleList([
VocabParallelEmbedding(config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
for _ in range(self.max_speculative_tokens)
])
self.tie_weights = config.tie_weights
self.scale_input = config.scale_input
self.proj = nn.ModuleList([
nn.Linear((self.emb_dim if i == 0 else self.inner_dim),
self.inner_dim,
bias=False) for i in range(self.max_speculative_tokens)
])
if self.tie_weights:
assert (
self.n_predict >
1), "You cannot tie weights between stages when only 1 exists"
embedding = VocabParallelEmbedding(
config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
self.emb = nn.ModuleList([embedding] * self.max_speculative_tokens)
self.head = nn.ModuleList([
nn.Linear(self.inner_dim, self.vocab_size, bias=False)
for _ in range(self.max_speculative_tokens)
])
self.ln = nn.ModuleList([
MLPSpeculatorLayerNorm(self.inner_dim)
for _ in range(self.max_speculative_tokens)
])
# the initial projection from the base model may
# have a different size, so that stays separate.
proj_first = nn.Linear(self.emb_dim, self.inner_dim, bias=False)
proj_tied = nn.Linear(self.inner_dim, self.inner_dim, bias=False)
self.proj = nn.ModuleList([proj_first] + [proj_tied] *
(self.max_speculative_tokens - 1))
head = nn.Linear(self.inner_dim, self.vocab_size, bias=False)
self.head = nn.ModuleList([head] * self.max_speculative_tokens)
ln = MLPSpeculatorLayerNorm(self.inner_dim,
elementwise_scale_and_shift=True)
self.ln = nn.ModuleList([ln] * self.max_speculative_tokens)
else:
self.emb = nn.ModuleList([
VocabParallelEmbedding(config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
for _ in range(self.max_speculative_tokens)
])
self.proj = nn.ModuleList([
nn.Linear((self.emb_dim if i == 0 else self.inner_dim),
self.inner_dim,
bias=False)
for i in range(self.max_speculative_tokens)
])
self.head = nn.ModuleList([
nn.Linear(self.inner_dim, self.vocab_size, bias=False)
for _ in range(self.max_speculative_tokens)
])
self.ln = nn.ModuleList([
MLPSpeculatorLayerNorm(self.inner_dim,
elementwise_scale_and_shift=True)
for _ in range(self.max_speculative_tokens)
])
if self.scale_input:
self.ln0 = MLPSpeculatorLayerNorm(
self.emb_dim, elementwise_scale_and_shift=False)
self.state_weight = 0.5**(0.5 / config.n_predict)
self.emb_weight = math.sqrt(
@ -105,6 +146,9 @@ class MLPSpeculator(nn.Module):
# b x 1 x d
previous_hidden_states = previous_hidden_states.unsqueeze(1)
if self.scale_input:
previous_hidden_states = self.ln0(previous_hidden_states) / SQRT2
# b x 1
last_tokens = input_ids.unsqueeze(1)

View File

@ -17,6 +17,8 @@ class MLPSpeculatorConfig(PretrainedConfig):
n_predict: int = 3,
top_k_tokens_per_head: Optional[List[int]] = None,
n_candidates: int = 5,
tie_weights: bool = False,
scale_input: bool = False,
**kwargs):
"""
Initialize an MLPSpeculatorConfig
@ -38,6 +40,14 @@ class MLPSpeculatorConfig(PretrainedConfig):
NOTE: This parameter is currently unused.
n_candidates: int
number of child candidates to create per sequence
tie_weights: bool
If true, use a single set of weights for every model
head/stage after the first. The initial projection
from the base model may have a different size, so that
stays separate.
scale_input: bool
if True, will scale the initial hidden states from
the base model.
"""
if top_k_tokens_per_head is None:
top_k_tokens_per_head = [5, 4, 3]
@ -49,5 +59,7 @@ class MLPSpeculatorConfig(PretrainedConfig):
self.top_k_tokens_per_head = top_k_tokens_per_head
self.n_candidates = n_candidates
self.num_lookahead_tokens = n_predict
self.tie_weights = tie_weights
self.scale_input = scale_input
super().__init__(**kwargs)