[Hardware][AMD] ROCm6.2 upgrade (#8674)
This commit is contained in:
parent
1a2aef3e59
commit
530821d00c
@ -1,5 +1,5 @@
|
||||
# Default ROCm 6.1 base image
|
||||
ARG BASE_IMAGE="rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging"
|
||||
# Default ROCm 6.2 base image
|
||||
ARG BASE_IMAGE="rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0"
|
||||
|
||||
# Default ROCm ARCHes to build vLLM for.
|
||||
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
|
||||
@ -7,18 +7,12 @@ ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
|
||||
# Whether to install CK-based flash-attention
|
||||
# If 0, will not install flash-attention
|
||||
ARG BUILD_FA="1"
|
||||
# If `TRY_FA_WHEEL=1`, we will try installing flash-attention from `FA_WHEEL_URL`
|
||||
# If this succeeds, we use the downloaded wheel and skip building flash-attention.
|
||||
# Otherwise, ROCm flash-attention from `FA_BRANCH` will be built for the
|
||||
# architectures specified in `FA_GFX_ARCHS`
|
||||
ARG TRY_FA_WHEEL="1"
|
||||
ARG FA_WHEEL_URL="https://github.com/ROCm/flash-attention/releases/download/v2.5.9post1-cktile-vllm/flash_attn-2.5.9.post1-cp39-cp39-linux_x86_64.whl"
|
||||
ARG FA_GFX_ARCHS="gfx90a;gfx942"
|
||||
ARG FA_BRANCH="23a2b1c2"
|
||||
ARG FA_BRANCH="3cea2fb"
|
||||
|
||||
# Whether to build triton on rocm
|
||||
ARG BUILD_TRITON="1"
|
||||
ARG TRITON_BRANCH="e0fc12c"
|
||||
ARG TRITON_BRANCH="e192dba"
|
||||
|
||||
### Base image build stage
|
||||
FROM $BASE_IMAGE AS base
|
||||
@ -50,16 +44,17 @@ RUN python3 -m pip install --upgrade pip
|
||||
# Remove sccache so it doesn't interfere with ccache
|
||||
# TODO: implement sccache support across components
|
||||
RUN apt-get purge -y sccache; python3 -m pip uninstall -y sccache; rm -f "$(which sccache)"
|
||||
# Install torch == 2.5.0 on ROCm
|
||||
|
||||
# Install torch == 2.6.0 on ROCm
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
|
||||
*"rocm-6.1"*) \
|
||||
*"rocm-6.2"*) \
|
||||
python3 -m pip uninstall -y torch torchvision \
|
||||
&& python3 -m pip install --pre \
|
||||
torch==2.5.0.dev20240726 \
|
||||
cmake>=3.26 ninja packaging setuptools-scm>=8 wheel jinja2 \
|
||||
torchvision==0.20.0.dev20240726 \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.1 ;; \
|
||||
torch==2.6.0.dev20240918 \
|
||||
setuptools-scm>=8 \
|
||||
torchvision==0.20.0.dev20240918 \
|
||||
--extra-index-url https://download.pytorch.org/whl/nightly/rocm6.2;; \
|
||||
*) ;; esac
|
||||
|
||||
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
|
||||
@ -81,17 +76,11 @@ RUN cd /opt/rocm/share/amd_smi \
|
||||
### Flash-Attention wheel build stage
|
||||
FROM base AS build_fa
|
||||
ARG BUILD_FA
|
||||
ARG TRY_FA_WHEEL
|
||||
ARG FA_WHEEL_URL
|
||||
ARG FA_GFX_ARCHS
|
||||
ARG FA_BRANCH
|
||||
# Build ROCm flash-attention wheel if `BUILD_FA = 1`
|
||||
RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
if [ "$BUILD_FA" = "1" ]; then \
|
||||
if [ "${TRY_FA_WHEEL}" = "1" ] && python3 -m pip install "${FA_WHEEL_URL}"; then \
|
||||
# If a suitable wheel exists, we download it instead of building FA
|
||||
mkdir -p /install && wget -N "${FA_WHEEL_URL}" -P /install; \
|
||||
else \
|
||||
mkdir -p libs \
|
||||
&& cd libs \
|
||||
&& git clone https://github.com/ROCm/flash-attention.git \
|
||||
@ -99,7 +88,6 @@ RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
&& git checkout "${FA_BRANCH}" \
|
||||
&& git submodule update --init \
|
||||
&& GPU_ARCHS="${FA_GFX_ARCHS}" python3 setup.py bdist_wheel --dist-dir=/install; \
|
||||
fi; \
|
||||
# Create an empty directory otherwise as later build stages expect one
|
||||
else mkdir -p /install; \
|
||||
fi
|
||||
@ -114,6 +102,7 @@ RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
if [ "$BUILD_TRITON" = "1" ]; then \
|
||||
mkdir -p libs \
|
||||
&& cd libs \
|
||||
&& python3 -m pip install ninja cmake wheel pybind11 \
|
||||
&& git clone https://github.com/OpenAI/triton.git \
|
||||
&& cd triton \
|
||||
&& git checkout "${TRITON_BRANCH}" \
|
||||
@ -143,13 +132,6 @@ RUN --mount=type=cache,target=${CCACHE_DIR} \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
--mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m pip install -Ur requirements-rocm.txt \
|
||||
&& case "$(ls /opt | grep -Po 'rocm-[0-9]\.[0-9]')" in \
|
||||
*"rocm-6.1"*) \
|
||||
# Bring in upgrades to HIP graph earlier than ROCm 6.2 for vLLM
|
||||
wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib \
|
||||
# Prevent interference if torch bundles its own HIP runtime
|
||||
&& rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so* || true;; \
|
||||
*) ;; esac \
|
||||
&& python3 setup.py clean --all \
|
||||
&& python3 setup.py develop
|
||||
|
||||
|
@ -3,15 +3,17 @@
|
||||
Installation with ROCm
|
||||
======================
|
||||
|
||||
vLLM supports AMD GPUs with ROCm 6.1.
|
||||
vLLM supports AMD GPUs with ROCm 6.2.
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
* OS: Linux
|
||||
* Python: 3.8 -- 3.11
|
||||
* Python: 3.9 -- 3.12
|
||||
* GPU: MI200s (gfx90a), MI300 (gfx942), Radeon RX 7900 series (gfx1100)
|
||||
* ROCm 6.1
|
||||
* ROCm 6.2
|
||||
|
||||
Note: PyTorch 2.5+/ROCm6.2 dropped the support for python 3.8.
|
||||
|
||||
Installation options:
|
||||
|
||||
@ -27,7 +29,7 @@ You can build and install vLLM from source.
|
||||
|
||||
First, build a docker image from `Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ and launch a docker container from the image.
|
||||
|
||||
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ uses ROCm 6.1 by default, but also supports ROCm 5.7 and 6.0 in older vLLM branches.
|
||||
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ uses ROCm 6.2 by default, but also supports ROCm 5.7, 6.0 and 6.1 in older vLLM branches.
|
||||
It provides flexibility to customize the build of docker image using the following arguments:
|
||||
|
||||
* `BASE_IMAGE`: specifies the base image used when running ``docker build``, specifically the PyTorch on ROCm base image.
|
||||
@ -39,13 +41,13 @@ It provides flexibility to customize the build of docker image using the followi
|
||||
Their values can be passed in when running ``docker build`` with ``--build-arg`` options.
|
||||
|
||||
|
||||
To build vllm on ROCm 6.1 for MI200 and MI300 series, you can use the default:
|
||||
To build vllm on ROCm 6.2 for MI200 and MI300 series, you can use the default:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ DOCKER_BUILDKIT=1 docker build -f Dockerfile.rocm -t vllm-rocm .
|
||||
|
||||
To build vllm on ROCm 6.1 for Radeon RX7900 series (gfx1100), you should specify ``BUILD_FA`` as below:
|
||||
To build vllm on ROCm 6.2 for Radeon RX7900 series (gfx1100), you should specify ``BUILD_FA`` as below:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
@ -79,9 +81,8 @@ Option 2: Build from source
|
||||
|
||||
- `ROCm <https://rocm.docs.amd.com/en/latest/deploy/linux/index.html>`_
|
||||
- `PyTorch <https://pytorch.org/>`_
|
||||
- `hipBLAS <https://rocm.docs.amd.com/projects/hipBLAS/en/latest/install.html>`_
|
||||
|
||||
For installing PyTorch, you can start from a fresh docker image, e.g, `rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging`, `rocm/pytorch-nightly`.
|
||||
For installing PyTorch, you can start from a fresh docker image, e.g, `rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0`, `rocm/pytorch-nightly`.
|
||||
|
||||
Alternatively, you can install PyTorch using PyTorch wheels. You can check PyTorch installation guide in PyTorch `Getting Started <https://pytorch.org/get-started/locally/>`_
|
||||
|
||||
@ -90,26 +91,45 @@ Alternatively, you can install PyTorch using PyTorch wheels. You can check PyTor
|
||||
|
||||
Install ROCm's Triton flash attention (the default triton-mlir branch) following the instructions from `ROCm/triton <https://github.com/ROCm/triton/blob/triton-mlir/README.md>`_
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ python3 -m pip install ninja cmake wheel pybind11
|
||||
$ pip uninstall -y triton
|
||||
$ git clone https://github.com/OpenAI/triton.git
|
||||
$ cd triton
|
||||
$ git checkout e192dba
|
||||
$ cd python
|
||||
$ pip3 install .
|
||||
$ cd ../..
|
||||
|
||||
.. note::
|
||||
- If you see HTTP issue related to downloading packages during building triton, please try again as the HTTP error is intermittent.
|
||||
|
||||
|
||||
2. Optionally, if you choose to use CK flash attention, you can install `flash attention for ROCm <https://github.com/ROCm/flash-attention/tree/ck_tile>`_
|
||||
|
||||
|
||||
Install ROCm's flash attention (v2.5.9.post1) following the instructions from `ROCm/flash-attention <https://github.com/ROCm/flash-attention/tree/ck_tile#amd-gpurocm-support>`_
|
||||
Alternatively, wheels intended for vLLM use can be accessed under the releases.
|
||||
|
||||
For example, for ROCm 6.2, suppose your gfx arch is `gfx90a`.
|
||||
Note to get your gfx architecture, run `rocminfo |grep gfx`.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ git clone https://github.com/ROCm/flash-attention.git
|
||||
$ cd flash-attention
|
||||
$ git checkout 3cea2fb
|
||||
$ git submodule update --init
|
||||
$ GPU_ARCHS="gfx90a" python3 setup.py install
|
||||
$ cd ..
|
||||
|
||||
.. note::
|
||||
- You might need to downgrade the "ninja" version to 1.10 it is not used when compiling flash-attention-2 (e.g. `pip install ninja==1.10.2.4`)
|
||||
|
||||
3. Build vLLM.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ cd vllm
|
||||
$ pip install -U -r requirements-rocm.txt
|
||||
$ python setup.py develop # This may take 5-10 minutes. Currently, `pip install .` does not work for ROCm installation
|
||||
|
||||
|
||||
.. tip::
|
||||
|
||||
For example, vLLM v0.5.3 on ROCM 6.1 can be built with the following steps:
|
||||
For example, vLLM on ROCM 6.2 can be built with the following steps:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
@ -117,7 +137,7 @@ Alternatively, wheels intended for vLLM use can be accessed under the releases.
|
||||
|
||||
$ # Install PyTorch
|
||||
$ pip uninstall torch -y
|
||||
$ pip install --no-cache-dir --pre torch==2.5.0.dev20240726 --index-url https://download.pytorch.org/whl/nightly/rocm6.1
|
||||
$ pip install --no-cache-dir --pre torch==2.6.0.dev20240918 --index-url https://download.pytorch.org/whl/nightly/rocm6.2
|
||||
|
||||
$ # Build & install AMD SMI
|
||||
$ pip install /opt/rocm/share/amd_smi
|
||||
@ -127,15 +147,14 @@ Alternatively, wheels intended for vLLM use can be accessed under the releases.
|
||||
$ pip install "numpy<2"
|
||||
$ pip install -r requirements-rocm.txt
|
||||
|
||||
$ # Apply the patch to ROCM 6.1 (requires root permission)
|
||||
$ wget -N https://github.com/ROCm/vllm/raw/fa78403/rocm_patch/libamdhip64.so.6 -P /opt/rocm/lib
|
||||
$ rm -f "$(python3 -c 'import torch; print(torch.__path__[0])')"/lib/libamdhip64.so*
|
||||
|
||||
$ # Build vLLM for MI210/MI250/MI300.
|
||||
$ export PYTORCH_ROCM_ARCH="gfx90a;gfx942"
|
||||
$ python3 setup.py develop
|
||||
|
||||
|
||||
This may take 5-10 minutes. Currently, `pip install .`` does not work for ROCm installation
|
||||
|
||||
|
||||
.. tip::
|
||||
|
||||
- Triton flash attention is used by default. For benchmarking purposes, it is recommended to run a warm up step before collecting perf numbers.
|
||||
|
Loading…
x
Reference in New Issue
Block a user