[Model] Support Mistral3 in the HF Transformers format (#15505)
Signed-off-by: mgoin <mgoin64@gmail.com> Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
parent
f3aca1ee30
commit
51d7c6a2b2
@ -865,6 +865,13 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `Mistral3ForConditionalGeneration`
|
||||
* Mistral3
|
||||
* T + I<sup>+</sup>
|
||||
* `mistralai/Mistral-Small-3.1-24B-Instruct-2503`, etc.
|
||||
*
|
||||
* ✅︎
|
||||
*
|
||||
- * `MllamaForConditionalGeneration`
|
||||
* Llama 3.2
|
||||
* T + I<sup>+</sup>
|
||||
|
@ -498,6 +498,29 @@ def run_minicpmv(questions: list[str], modality: str) -> ModelRequestData:
|
||||
return run_minicpmv_base(questions, modality, "openbmb/MiniCPM-V-2_6")
|
||||
|
||||
|
||||
# Mistral-3 HF-format
|
||||
def run_mistral3(questions: list[str], modality: str) -> ModelRequestData:
|
||||
assert modality == "image"
|
||||
|
||||
model_name = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
|
||||
# NOTE: Need L40 (or equivalent) to avoid OOM
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=8192,
|
||||
max_num_seqs=2,
|
||||
tensor_parallel_size=2,
|
||||
disable_mm_preprocessor_cache=args.disable_mm_preprocessor_cache,
|
||||
)
|
||||
|
||||
prompts = [f"<s>[INST]{question}\n[IMG][/INST]" for question in questions]
|
||||
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompts=prompts,
|
||||
)
|
||||
|
||||
|
||||
# LLama 3.2
|
||||
def run_mllama(questions: list[str], modality: str) -> ModelRequestData:
|
||||
assert modality == "image"
|
||||
@ -859,6 +882,7 @@ model_example_map = {
|
||||
"mantis": run_mantis,
|
||||
"minicpmo": run_minicpmo,
|
||||
"minicpmv": run_minicpmv,
|
||||
"mistral3": run_mistral3,
|
||||
"mllama": run_mllama,
|
||||
"molmo": run_molmo,
|
||||
"NVLM_D": run_nvlm_d,
|
||||
|
@ -218,6 +218,28 @@ def load_internvl(question: str, image_urls: list[str]) -> ModelRequestData:
|
||||
)
|
||||
|
||||
|
||||
def load_mistral3(question: str, image_urls: list[str]) -> ModelRequestData:
|
||||
model_name = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
||||
|
||||
# Adjust this as necessary to fit in GPU
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=8192,
|
||||
max_num_seqs=2,
|
||||
tensor_parallel_size=2,
|
||||
limit_mm_per_prompt={"image": len(image_urls)},
|
||||
)
|
||||
|
||||
placeholders = "[IMG]" * len(image_urls)
|
||||
prompt = f"<s>[INST]{question}\n{placeholders}[/INST]"
|
||||
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompt=prompt,
|
||||
image_data=[fetch_image(url) for url in image_urls],
|
||||
)
|
||||
|
||||
|
||||
def load_mllama(question: str, image_urls: list[str]) -> ModelRequestData:
|
||||
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
||||
|
||||
@ -509,6 +531,7 @@ model_example_map = {
|
||||
"h2ovl_chat": load_h2ovl,
|
||||
"idefics3": load_idefics3,
|
||||
"internvl_chat": load_internvl,
|
||||
"mistral3": load_mistral3,
|
||||
"mllama": load_mllama,
|
||||
"NVLM_D": load_nvlm_d,
|
||||
"phi3_v": load_phi3v,
|
||||
|
@ -297,6 +297,9 @@ _MULTIMODAL_EXAMPLE_MODELS = {
|
||||
"MiniCPMV": _HfExamplesInfo("openbmb/MiniCPM-Llama3-V-2_5",
|
||||
extras={"2.6": "openbmb/MiniCPM-V-2_6"}, # noqa: E501
|
||||
trust_remote_code=True),
|
||||
"Mistral3ForConditionalGeneration": _HfExamplesInfo("mistralai/Mistral-Small-3.1-24B-Instruct-2503", # noqa: E501
|
||||
min_transformers_version="4.50", # noqa: E501
|
||||
extras={"fp8": "nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"}), # noqa: E501
|
||||
"MolmoForCausalLM": _HfExamplesInfo("allenai/Molmo-7B-D-0924",
|
||||
max_transformers_version="4.48",
|
||||
transformers_version_reason="Use of private method which no longer exists.", # noqa: E501
|
||||
|
@ -487,7 +487,8 @@ class BaseMultiModalItemTracker(ABC, Generic[_T]):
|
||||
return "<|endoftext10|>" # 200010 (see vocab.json in hf model)
|
||||
if model_type in ("minicpmo", "minicpmv"):
|
||||
return "(<image>./</image>)"
|
||||
if model_type in ("blip-2", "fuyu", "paligemma", "pixtral"):
|
||||
if model_type in ("blip-2", "fuyu", "paligemma", "pixtral",
|
||||
"mistral3"):
|
||||
# These models do not use image tokens in the prompt
|
||||
return None
|
||||
if model_type == "qwen":
|
||||
|
656
vllm/model_executor/models/mistral3.py
Normal file
656
vllm/model_executor/models/mistral3.py
Normal file
@ -0,0 +1,656 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from abc import abstractmethod
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from functools import cached_property
|
||||
from typing import (Final, Literal, Optional, Protocol, Set, Tuple, TypedDict,
|
||||
TypeVar, Union)
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import (BatchFeature, Mistral3Config, PixtralVisionConfig,
|
||||
PretrainedConfig)
|
||||
from transformers.models.pixtral import PixtralProcessor
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.inputs import InputProcessingContext
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
|
||||
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
|
||||
MultiModalDataItems)
|
||||
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
BaseProcessingInfo, ProcessingCache,
|
||||
PromptReplacement, PromptUpdate)
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal, SupportsPP,
|
||||
SupportsV0Only)
|
||||
from .pixtral import PixtralHFEncoderInfo, PixtralHFVisionModel
|
||||
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
|
||||
maybe_prefix, merge_multimodal_embeddings)
|
||||
from .vision import get_vision_encoder_info, select_patch_features
|
||||
|
||||
|
||||
class Mistral3ImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values_pixtral"]
|
||||
pixel_values: Union[torch.Tensor, list[torch.Tensor]]
|
||||
"""
|
||||
Shape: `(batch_size * num_images, num_channels, height, width)`
|
||||
|
||||
Note that `height` or `width` may be different per batch and image,
|
||||
in which case the data is passed as a list instead of a batched tensor.
|
||||
"""
|
||||
|
||||
embed_is_patch: Union[torch.Tensor, list[torch.Tensor]]
|
||||
"""
|
||||
A boolean mask indicating which image embeddings correspond
|
||||
to patch tokens.
|
||||
|
||||
Shape: `(batch_size, num_images, num_embeds)`
|
||||
"""
|
||||
|
||||
|
||||
class Mistral3PatchMerger(nn.Module):
|
||||
"""
|
||||
Learned merging of spatial_merge_size ** 2 patches
|
||||
"""
|
||||
|
||||
def __init__(self, vision_hidden_size: int, spatial_merge_size: int,
|
||||
patch_size: int):
|
||||
super().__init__()
|
||||
|
||||
self.vision_hidden_size = vision_hidden_size
|
||||
self.spatial_merge_size = spatial_merge_size
|
||||
self.patch_size = patch_size
|
||||
self.merging_layer = nn.Linear(vision_hidden_size *
|
||||
self.spatial_merge_size**2,
|
||||
vision_hidden_size,
|
||||
bias=False)
|
||||
|
||||
def forward(self, image_features: torch.Tensor,
|
||||
image_sizes: torch.Tensor) -> torch.Tensor:
|
||||
image_sizes = [(image_size[0] // self.patch_size,
|
||||
image_size[1] // self.patch_size)
|
||||
for image_size in image_sizes]
|
||||
|
||||
tokens_per_image = [h * w for h, w in image_sizes]
|
||||
d = image_features.shape[-1]
|
||||
|
||||
permuted_tensor = []
|
||||
for image_index, image_tokens in enumerate(
|
||||
image_features.split(tokens_per_image)):
|
||||
# Reshape image_tokens into a 2D grid
|
||||
h, w = image_sizes[image_index]
|
||||
image_grid = image_tokens.view(h, w, d).permute(2, 0,
|
||||
1).unsqueeze(0)
|
||||
grid = torch.nn.functional.unfold(
|
||||
image_grid,
|
||||
kernel_size=self.spatial_merge_size,
|
||||
stride=self.spatial_merge_size)
|
||||
grid = grid.view(d * self.spatial_merge_size**2, -1).t()
|
||||
permuted_tensor.append(grid)
|
||||
|
||||
image_features = torch.cat(permuted_tensor, dim=0)
|
||||
image_features = self.merging_layer(image_features)
|
||||
return image_features
|
||||
|
||||
|
||||
class Mistral3MultiModalProjector(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
vision_hidden_size: int,
|
||||
text_hidden_size: int,
|
||||
spatial_merge_size: int,
|
||||
patch_size: int,
|
||||
projector_hidden_act: str,
|
||||
multimodal_projector_bias: bool,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
self.norm = RMSNorm(vision_hidden_size, eps=1e-5)
|
||||
self.patch_merger = Mistral3PatchMerger(
|
||||
vision_hidden_size=vision_hidden_size,
|
||||
spatial_merge_size=spatial_merge_size,
|
||||
patch_size=patch_size)
|
||||
|
||||
self.linear_1 = ColumnParallelLinear(vision_hidden_size,
|
||||
text_hidden_size,
|
||||
bias=multimodal_projector_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.linear_1")
|
||||
self.act = get_act_fn(projector_hidden_act)
|
||||
self.linear_2 = RowParallelLinear(text_hidden_size,
|
||||
text_hidden_size,
|
||||
bias=multimodal_projector_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.linear_2")
|
||||
|
||||
def forward(self, image_features: torch.Tensor,
|
||||
image_sizes: torch.Tensor) -> torch.Tensor:
|
||||
image_features = self.norm(image_features)
|
||||
image_features = self.patch_merger(image_features, image_sizes)
|
||||
hidden_states, _ = self.linear_1(image_features)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states, _ = self.linear_2(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class LlavaLikeConfig(Protocol):
|
||||
vision_config: Final[PretrainedConfig]
|
||||
image_token_index: Final[int]
|
||||
vision_feature_select_strategy: Final[str]
|
||||
vision_feature_layer: Final[Union[int, list[int]]]
|
||||
|
||||
|
||||
class LlavaLikeProcessor(Protocol):
|
||||
image_token: Final[str]
|
||||
|
||||
|
||||
class BaseLlavaProcessingInfo(BaseProcessingInfo):
|
||||
|
||||
def get_hf_config(self) -> LlavaLikeConfig:
|
||||
return self.ctx.get_hf_config(Mistral3Config)
|
||||
|
||||
def get_vision_encoder_info(self):
|
||||
return get_vision_encoder_info(self.get_hf_config())
|
||||
|
||||
@abstractmethod
|
||||
def get_hf_processor(self, **kwargs: object) -> LlavaLikeProcessor:
|
||||
raise NotImplementedError
|
||||
|
||||
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
||||
return {"image": None}
|
||||
|
||||
def get_mm_max_tokens_per_item(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> Mapping[str, int]:
|
||||
return {"image": self.get_max_image_tokens()}
|
||||
|
||||
def get_num_image_tokens(
|
||||
self,
|
||||
*,
|
||||
image_width: int,
|
||||
image_height: int,
|
||||
) -> int:
|
||||
vision_encoder_info = self.get_vision_encoder_info()
|
||||
return vision_encoder_info.get_num_image_tokens(
|
||||
image_width=image_width,
|
||||
image_height=image_height,
|
||||
)
|
||||
|
||||
def get_image_size_with_most_features(self) -> ImageSize:
|
||||
vision_encoder_info = self.get_vision_encoder_info()
|
||||
width = height = vision_encoder_info.get_image_size()
|
||||
return ImageSize(width=width, height=height)
|
||||
|
||||
def get_max_image_tokens(self) -> int:
|
||||
target_width, target_height = self.get_image_size_with_most_features()
|
||||
|
||||
return self.get_num_image_tokens(
|
||||
image_width=target_width,
|
||||
image_height=target_height,
|
||||
)
|
||||
|
||||
|
||||
_I = TypeVar("_I", bound=BaseLlavaProcessingInfo)
|
||||
|
||||
|
||||
class Mistral3DummyInputsBuilder(BaseDummyInputsBuilder[_I]):
|
||||
|
||||
def get_dummy_processor_inputs(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> ProcessorInputs:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
|
||||
processor = self.info.get_hf_processor()
|
||||
image_token = processor.image_token
|
||||
target_width, target_height = \
|
||||
self.info.get_image_size_with_most_features()
|
||||
|
||||
mm_data = {
|
||||
"image":
|
||||
self._get_dummy_images(width=target_width,
|
||||
height=target_height,
|
||||
num_images=num_images)
|
||||
}
|
||||
|
||||
return ProcessorInputs(
|
||||
prompt_text=image_token * num_images,
|
||||
mm_data=mm_data,
|
||||
)
|
||||
|
||||
|
||||
class Mistral3ProcessingInfo(BaseLlavaProcessingInfo):
|
||||
|
||||
def get_hf_processor(self, **kwargs: object):
|
||||
return self.ctx.get_hf_processor(PixtralProcessor, **kwargs)
|
||||
|
||||
|
||||
class Mistral3MultiModalProcessor(
|
||||
BaseMultiModalProcessor[Mistral3ProcessingInfo]):
|
||||
|
||||
def _call_hf_processor(
|
||||
self,
|
||||
prompt: str,
|
||||
mm_data: Mapping[str, object],
|
||||
mm_kwargs: Mapping[str, object],
|
||||
) -> BatchFeature:
|
||||
processed_outputs = super()._call_hf_processor(
|
||||
prompt=prompt,
|
||||
mm_data=mm_data,
|
||||
mm_kwargs=mm_kwargs,
|
||||
)
|
||||
|
||||
pixel_values = processed_outputs.get("pixel_values")
|
||||
if pixel_values is not None:
|
||||
|
||||
# Avoid padding since we need the output for each image to be
|
||||
# independent of other images for the cache to work correctly
|
||||
image_sizes = processed_outputs["image_sizes"]
|
||||
assert len(pixel_values) == len(image_sizes)
|
||||
|
||||
processed_outputs["pixel_values"] = [
|
||||
p[:, :h, :w] for p, (h, w) in zip(pixel_values, image_sizes)
|
||||
]
|
||||
|
||||
hf_config = self.info.get_hf_config()
|
||||
vision_config = hf_config.vision_config
|
||||
assert isinstance(vision_config, PixtralVisionConfig)
|
||||
encoder_info = PixtralHFEncoderInfo(vision_config)
|
||||
|
||||
tile_sizes = [
|
||||
encoder_info.get_patch_grid_size(
|
||||
image_width=pixel_value.shape[-1],
|
||||
image_height=pixel_value.shape[-2],
|
||||
) for pixel_value in processed_outputs["pixel_values"]
|
||||
]
|
||||
embed_is_patch = [
|
||||
torch.tensor(([True] * ncols + [False]) * nrows)
|
||||
for ncols, nrows in tile_sizes
|
||||
]
|
||||
processed_outputs["embed_is_patch"] = embed_is_patch
|
||||
|
||||
return processed_outputs
|
||||
|
||||
def _get_mm_fields_config(
|
||||
self,
|
||||
hf_inputs: BatchFeature,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
) -> Mapping[str, MultiModalFieldConfig]:
|
||||
return dict(
|
||||
pixel_values=MultiModalFieldConfig.batched("image"),
|
||||
embed_is_patch=MultiModalFieldConfig.batched("image"),
|
||||
image_embeds=MultiModalFieldConfig.batched("image"),
|
||||
)
|
||||
|
||||
def _get_prompt_updates(
|
||||
self,
|
||||
mm_items: MultiModalDataItems,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
out_mm_kwargs: MultiModalKwargs,
|
||||
) -> Sequence[PromptUpdate]:
|
||||
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
||||
hf_config = self.info.get_hf_config()
|
||||
tokenizer = self.info.get_tokenizer()
|
||||
vocab = tokenizer.get_vocab()
|
||||
|
||||
image_break_id = vocab[processor.image_break_token]
|
||||
image_token_id = hf_config.image_token_index
|
||||
image_end_id = vocab[processor.image_end_token]
|
||||
|
||||
vision_config = hf_config.vision_config
|
||||
assert isinstance(vision_config, PixtralVisionConfig)
|
||||
encoder_info = PixtralHFEncoderInfo(vision_config)
|
||||
|
||||
def get_replacement(item_idx: int):
|
||||
images = mm_items.get_items("image", ImageProcessorItems)
|
||||
image_size = images.get_image_size(item_idx)
|
||||
|
||||
ncols, nrows = encoder_info.get_patch_grid_size(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
|
||||
tokens = ([image_token_id] * ncols + [image_break_id]) * nrows
|
||||
tokens[-1] = image_end_id
|
||||
|
||||
return tokens
|
||||
|
||||
return [
|
||||
PromptReplacement(
|
||||
modality="image",
|
||||
target=[image_token_id],
|
||||
replacement=get_replacement,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def _build_mistral3_info(
|
||||
ctx: InputProcessingContext, ) -> BaseLlavaProcessingInfo:
|
||||
hf_config = ctx.get_hf_config(Mistral3Config)
|
||||
assert isinstance(hf_config.vision_config, PixtralVisionConfig)
|
||||
return Mistral3ProcessingInfo(ctx)
|
||||
|
||||
|
||||
def _build_mistral3_processor(
|
||||
info: _I,
|
||||
dummy_inputs: BaseDummyInputsBuilder[_I],
|
||||
*,
|
||||
cache: Optional[ProcessingCache] = None,
|
||||
enable_sanity_checks: bool = True,
|
||||
) -> BaseMultiModalProcessor:
|
||||
assert isinstance(info, Mistral3ProcessingInfo)
|
||||
return Mistral3MultiModalProcessor(
|
||||
info,
|
||||
dummy_inputs, # type: ignore
|
||||
cache=cache,
|
||||
enable_sanity_checks=enable_sanity_checks,
|
||||
)
|
||||
|
||||
|
||||
def _get_num_hidden_layers(hf_config: LlavaLikeConfig) -> int:
|
||||
"""Determine the number of hidden layers to initialize up to in the
|
||||
visual encoder.
|
||||
|
||||
Args:
|
||||
hf_config: Model config with vision feature layer(s).
|
||||
"""
|
||||
feature_layers = hf_config.vision_feature_layer
|
||||
num_hidden_layers = hf_config.vision_config.num_hidden_layers
|
||||
# If we have one feature layer, initialize up to that layer
|
||||
if isinstance(feature_layers, int):
|
||||
return _get_layer_index(feature_layers, num_hidden_layers)
|
||||
# If we have multiple feature layers, initialize up to the deepest one
|
||||
elif isinstance(feature_layers, (list, tuple)):
|
||||
return max(
|
||||
_get_layer_index(idx, num_hidden_layers) for idx in feature_layers)
|
||||
raise TypeError(f"vision_layer_feature type: {type(feature_layers)}"
|
||||
" is not supported")
|
||||
|
||||
|
||||
def _get_layer_index(feature_layer_index: int, num_hidden_layers: int) -> int:
|
||||
"""Given a signed vision feature layer, get the number of hidden layers
|
||||
needed to leverage it.
|
||||
|
||||
Args:
|
||||
feature_layer_index: Index of a required layer in the visual encoder.
|
||||
num_hidden_layers: The total number of hidden layers in the visual
|
||||
encoder.
|
||||
"""
|
||||
if feature_layer_index < 0:
|
||||
return num_hidden_layers + feature_layer_index + 1
|
||||
return feature_layer_index
|
||||
|
||||
|
||||
def init_vision_tower_for_llava(
|
||||
hf_config: LlavaLikeConfig,
|
||||
quant_config: Optional[QuantizationConfig],
|
||||
*,
|
||||
require_post_norm: Optional[bool] = None,
|
||||
prefix: str = "",
|
||||
) -> PixtralHFVisionModel:
|
||||
vision_config = hf_config.vision_config
|
||||
|
||||
# Initialize the vision tower only up to the deepest required feature layer
|
||||
num_hidden_layers = _get_num_hidden_layers(hf_config)
|
||||
|
||||
assert isinstance(vision_config, PixtralVisionConfig)
|
||||
|
||||
return PixtralHFVisionModel(
|
||||
vision_config,
|
||||
quant_config=quant_config,
|
||||
num_hidden_layers_override=num_hidden_layers,
|
||||
require_post_norm=require_post_norm,
|
||||
prefix=prefix,
|
||||
)
|
||||
|
||||
|
||||
# TODO(mgoin): Support V1, there are issues with image batching/chunking
|
||||
# that need to be resolved first.
|
||||
@MULTIMODAL_REGISTRY.register_processor(
|
||||
_build_mistral3_processor,
|
||||
info=_build_mistral3_info,
|
||||
dummy_inputs=Mistral3DummyInputsBuilder)
|
||||
class Mistral3ForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
SupportsPP, SupportsV0Only):
|
||||
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
||||
"gate_up_proj": ["gate_proj", "up_proj"]
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
multimodal_config = vllm_config.model_config.multimodal_config
|
||||
|
||||
self.config = config
|
||||
self.multimodal_config = multimodal_config
|
||||
|
||||
# NOTE: These are special cases for Pixtral-12B in the HF-format
|
||||
# https://huggingface.co/mistral-community/pixtral-12b/blob/main/config.json # noqa
|
||||
if (config.text_config.architectures is None
|
||||
and config.text_config.model_type == "mistral"):
|
||||
config.text_config.architectures = ["MistralForCausalLM"]
|
||||
if (config.projector_hidden_act is None
|
||||
and config.vision_config.hidden_act == "gelu"):
|
||||
config.projector_hidden_act = "gelu"
|
||||
|
||||
# TODO: Optionally initializes this for supporting embeddings.
|
||||
self.vision_tower = init_vision_tower_for_llava(
|
||||
config,
|
||||
quant_config,
|
||||
require_post_norm=False,
|
||||
prefix=maybe_prefix(prefix, "vision_tower"))
|
||||
self.multi_modal_projector = Mistral3MultiModalProjector(
|
||||
vision_hidden_size=config.vision_config.hidden_size,
|
||||
text_hidden_size=config.text_config.hidden_size,
|
||||
projector_hidden_act=config.projector_hidden_act,
|
||||
spatial_merge_size=config.spatial_merge_size,
|
||||
patch_size=config.vision_config.patch_size,
|
||||
multimodal_projector_bias=config.multimodal_projector_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "multi_modal_projector"))
|
||||
|
||||
self.language_model = init_vllm_registered_model(
|
||||
vllm_config=vllm_config,
|
||||
hf_config=config.text_config,
|
||||
prefix=maybe_prefix(prefix, "language_model"),
|
||||
)
|
||||
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.language_model.make_empty_intermediate_tensors)
|
||||
|
||||
@cached_property
|
||||
def sampler(self):
|
||||
if hasattr(self.language_model, "sampler"):
|
||||
return self.language_model.sampler
|
||||
|
||||
return get_sampler()
|
||||
|
||||
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
||||
h = w = self.config.vision_config.image_size
|
||||
expected_dims = (3, h, w)
|
||||
actual_dims = tuple(data.shape[1:])
|
||||
|
||||
if actual_dims != expected_dims:
|
||||
expected_expr = ("batch_size", *map(str, expected_dims))
|
||||
raise ValueError(
|
||||
f"The expected shape of pixel values is {expected_expr}. "
|
||||
f"You supplied {tuple(data.shape)}.")
|
||||
|
||||
return data
|
||||
|
||||
def _parse_and_validate_image_input(
|
||||
self, **kwargs: object) -> Optional[Mistral3ImagePixelInputs]:
|
||||
pixel_values = kwargs.pop("pixel_values", None)
|
||||
image_embeds = kwargs.pop("image_embeds", None)
|
||||
|
||||
if pixel_values is None and image_embeds is None:
|
||||
return None
|
||||
|
||||
assert pixel_values is not None
|
||||
if not isinstance(pixel_values, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of pixel values. "
|
||||
f"Got type: {type(pixel_values)}")
|
||||
|
||||
assert self.config.vision_config.model_type == "pixtral"
|
||||
embed_is_patch = kwargs.pop("embed_is_patch")
|
||||
if not isinstance(embed_is_patch, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of embed_is_patch. "
|
||||
f"Got type: {type(embed_is_patch)}")
|
||||
|
||||
return Mistral3ImagePixelInputs(
|
||||
type="pixel_values_pixtral",
|
||||
pixel_values=flatten_bn(pixel_values),
|
||||
embed_is_patch=embed_is_patch,
|
||||
)
|
||||
|
||||
def _process_image_input(
|
||||
self,
|
||||
image_input: Mistral3ImagePixelInputs,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
|
||||
if image_input["type"] == "image_embeds":
|
||||
return image_input["data"]
|
||||
|
||||
image_sizes = [(img.shape[-2], img.shape[-1])
|
||||
for img in image_input["pixel_values"]]
|
||||
|
||||
image_features = self.vision_tower(image_input["pixel_values"])
|
||||
|
||||
if isinstance(image_features, torch.Tensor):
|
||||
return self.multi_modal_projector(image_features, image_sizes)
|
||||
|
||||
feature_sizes = [
|
||||
image_feature.shape[0] // self.config.spatial_merge_size**2
|
||||
for image_feature in image_features
|
||||
]
|
||||
|
||||
image_embeds = self.multi_modal_projector(torch.cat(image_features),
|
||||
image_sizes)
|
||||
if len(feature_sizes) > 1:
|
||||
image_embeds = torch.split(image_embeds, feature_sizes)
|
||||
else:
|
||||
image_embeds = (image_embeds, )
|
||||
return image_embeds
|
||||
|
||||
def get_multimodal_embeddings(
|
||||
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
||||
image_input = self._parse_and_validate_image_input(**kwargs)
|
||||
if image_input is None:
|
||||
return None
|
||||
|
||||
vision_embeddings = self._process_image_input(image_input)
|
||||
|
||||
return vision_embeddings
|
||||
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
||||
) -> torch.Tensor:
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
if multimodal_embeddings is not None:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids,
|
||||
inputs_embeds,
|
||||
select_patch_features(multimodal_embeddings),
|
||||
self.config.image_token_index,
|
||||
)
|
||||
return inputs_embeds
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs: object,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
"""Run forward pass for Mistral3.
|
||||
|
||||
One key thing to understand is the `input_ids` already accounts for the
|
||||
positions of the to-be-inserted image embeddings.
|
||||
|
||||
Concretely, consider a text prompt:
|
||||
`"USER: <image>\\nWhat's the content of the image?\\nASSISTANT:"`.
|
||||
|
||||
Tokenizer outputs:
|
||||
`[1, 3148, 1001, 29901, 29871, 32000, 29871, 13, 5618, 29915, 29879,
|
||||
278, 2793, 310, 278, 1967, 29973, 13, 22933, 9047, 13566, 29901]`.
|
||||
|
||||
To reserve space in KV cache, we have to insert placeholder tokens
|
||||
before they are inputted to the model, so the input processor prepends
|
||||
additional image tokens (denoted as `32000`), resulting in:
|
||||
`[1, 3148, 1001, 29901, 29871, 32000, ..., 32000, 29871, 13, 5618,
|
||||
29915, 29879, 278, 2793, 310, 278, 1967, 29973, 13, 22933, 9047, 13566,
|
||||
29901]`.
|
||||
|
||||
We insert 575 tokens so that including the original image token in the
|
||||
input, there are a total of 576 (24 * 24) image tokens, which
|
||||
corresponds to the number of image tokens inputted to the language
|
||||
model, i.e. the number of image tokens outputted by the visual encoder.
|
||||
|
||||
This way, the `positions` and `attn_metadata` are consistent
|
||||
with the `input_ids`.
|
||||
|
||||
Args:
|
||||
input_ids: Flattened (concatenated) input_ids corresponding to a
|
||||
batch.
|
||||
pixel_values: The pixels in each input image.
|
||||
|
||||
See also:
|
||||
:class:`Mistral3ImagePixelInputs`
|
||||
"""
|
||||
if intermediate_tensors is not None:
|
||||
inputs_embeds = None
|
||||
|
||||
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
||||
# condition is for v0 compatibility.
|
||||
elif inputs_embeds is None:
|
||||
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
||||
inputs_embeds = self.get_input_embeddings(input_ids,
|
||||
vision_embeddings)
|
||||
input_ids = None
|
||||
|
||||
hidden_states = self.language_model.model(input_ids,
|
||||
positions,
|
||||
intermediate_tensors,
|
||||
inputs_embeds=inputs_embeds)
|
||||
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
return self.language_model.sample(logits, sampling_metadata)
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str,
|
||||
torch.Tensor]]) -> Set[str]:
|
||||
loader = AutoWeightsLoader(self)
|
||||
return loader.load_weights(weights)
|
@ -979,7 +979,8 @@ class PixtralHFEncoderInfo(VisionEncoderInfo[PixtralVisionConfig]):
|
||||
return self.vision_config.image_size
|
||||
|
||||
def get_patch_size(self) -> int:
|
||||
return self.vision_config.patch_size
|
||||
return (self.vision_config.patch_size *
|
||||
self.vision_config.spatial_merge_size)
|
||||
|
||||
def get_patch_grid_length(self) -> int:
|
||||
image_size, patch_size = self.get_image_size(), self.get_patch_size()
|
||||
@ -1001,8 +1002,8 @@ class PixtralHFEncoderInfo(VisionEncoderInfo[PixtralVisionConfig]):
|
||||
ratio = max(image_width / max_width, image_height / max_height)
|
||||
|
||||
if ratio > 1:
|
||||
image_width = int(math.ceil(image_width / ratio))
|
||||
image_height = int(math.ceil(image_height / ratio))
|
||||
image_width = int(math.floor(image_width / ratio))
|
||||
image_height = int(math.floor(image_height / ratio))
|
||||
|
||||
nrows, ncols = _get_pixtral_hf_num_image_tokens(
|
||||
(image_height, image_width),
|
||||
|
@ -177,6 +177,7 @@ _MULTIMODAL_MODELS = {
|
||||
"MantisForConditionalGeneration": ("llava", "MantisForConditionalGeneration"), # noqa: E501
|
||||
"MiniCPMO": ("minicpmo", "MiniCPMO"),
|
||||
"MiniCPMV": ("minicpmv", "MiniCPMV"),
|
||||
"Mistral3ForConditionalGeneration": ("mistral3", "Mistral3ForConditionalGeneration"), # noqa: E501
|
||||
"MolmoForCausalLM": ("molmo", "MolmoForCausalLM"),
|
||||
"NVLM_D": ("nvlm_d", "NVLM_D_Model"),
|
||||
"PaliGemmaForConditionalGeneration": ("paligemma", "PaliGemmaForConditionalGeneration"), # noqa: E501
|
||||
|
@ -69,6 +69,9 @@ def get_vision_encoder_info(
|
||||
if isinstance(vision_config, CLIPVisionConfig):
|
||||
return CLIPEncoderInfo(vision_config)
|
||||
if isinstance(vision_config, PixtralVisionConfig):
|
||||
# Need to sneak in spatial_merge_size for Mistral3
|
||||
vision_config.spatial_merge_size = getattr(hf_config,
|
||||
"spatial_merge_size", 1)
|
||||
return PixtralHFEncoderInfo(vision_config)
|
||||
if isinstance(vision_config, SiglipVisionConfig):
|
||||
return SiglipEncoderInfo(vision_config)
|
||||
|
Loading…
x
Reference in New Issue
Block a user