[Misc] Qwen2.5 VL support LoRA (#13261)

This commit is contained in:
Jee Jee Li 2025-02-20 10:37:55 +08:00 committed by GitHub
parent 473f51cfd9
commit 512368e34a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 129 additions and 62 deletions

View File

@ -854,7 +854,7 @@ See [this page](#generative-models) for more information on how to use generativ
* Qwen2.5-VL
* T + I<sup>E+</sup> + V<sup>E+</sup>
* `Qwen/Qwen2.5-VL-3B-Instruct`, `Qwen/Qwen2.5-VL-72B-Instruct`, etc.
*
* ✅︎
* ✅︎
* ✅︎
- * `UltravoxModel`

View File

@ -237,6 +237,11 @@ def qwen2vl_lora_files():
return snapshot_download(repo_id="jeeejeee/qwen2-vl-lora-pokemon")
@pytest.fixture(scope="session")
def qwen25vl_lora_files():
return snapshot_download(repo_id="jeeejeee/qwen25-vl-lora-pokemon")
@pytest.fixture(scope="session")
def tinyllama_lora_files():
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")

View File

@ -1,15 +1,37 @@
# SPDX-License-Identifier: Apache-2.0
from typing import List
from dataclasses import dataclass
from typing import Dict, List, Optional
import pytest
from packaging.version import Version
from transformers import __version__ as TRANSFORMERS_VERSION
import vllm
from vllm.assets.image import ImageAsset
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
@dataclass
class TestConfig:
model_path: str
lora_path: str
max_num_seqs: int = 2
max_loras: int = 2
max_lora_rank: int = 16
max_model_len: int = 4096
mm_processor_kwargs: Optional[Dict[str, int]] = None
def __post_init__(self):
if self.mm_processor_kwargs is None:
self.mm_processor_kwargs = {
"min_pixels": 28 * 28,
"max_pixels": 1280 * 28 * 28,
}
class Qwen2VLTester:
"""Test helper for Qwen2 VL models with LoRA"""
PROMPT_TEMPLATE = (
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>"
@ -17,67 +39,105 @@ PROMPT_TEMPLATE = (
"What is in the image?<|im_end|>\n"
"<|im_start|>assistant\n")
IMAGE_ASSETS = [
def __init__(self, config: TestConfig):
self.config = config
self.llm = self._initialize_llm()
def _initialize_llm(self) -> vllm.LLM:
"""Initialize the LLM with given configuration"""
return vllm.LLM(
model=self.config.model_path,
max_num_seqs=self.config.max_num_seqs,
enable_lora=True,
max_loras=self.config.max_loras,
max_lora_rank=self.config.max_lora_rank,
trust_remote_code=True,
mm_processor_kwargs=self.config.mm_processor_kwargs,
max_model_len=self.config.max_model_len,
)
def run_test(self,
images: List[ImageAsset],
expected_outputs: List[str],
lora_id: Optional[int] = None,
temperature: float = 0,
max_tokens: int = 5) -> List[str]:
sampling_params = vllm.SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
)
inputs = [{
"prompt": self.PROMPT_TEMPLATE,
"multi_modal_data": {
"image": asset.pil_image
},
} for asset in images]
lora_request = LoRARequest(str(lora_id), lora_id,
self.config.lora_path)
outputs = self.llm.generate(inputs,
sampling_params,
lora_request=lora_request)
generated_texts = [
output.outputs[0].text.strip() for output in outputs
]
# Validate outputs
for generated, expected in zip(generated_texts, expected_outputs):
assert expected.startswith(
generated), f"Generated text {generated} doesn't "
f"match expected pattern {expected}"
return generated_texts
TEST_IMAGES = [
ImageAsset("stop_sign"),
ImageAsset("cherry_blossom"),
]
# After fine-tuning with LoRA, all generated content should start begin `A`.
EXPECTED_OUTPUT = [
EXPECTED_OUTPUTS = [
"A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501
"A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501
]
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
sampling_params = vllm.SamplingParams(
temperature=0,
max_tokens=5,
)
inputs = [{
"prompt": PROMPT_TEMPLATE,
"multi_modal_data": {
"image": asset.pil_image
},
} for asset in IMAGE_ASSETS]
outputs = llm.generate(
inputs,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None,
)
# Print the outputs.
generated_texts: List[str] = []
for output in outputs:
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Generated text: {generated_text!r}")
return generated_texts
QWEN2VL_MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
QWEN25VL_MODEL_PATH = "Qwen/Qwen2.5-VL-3B-Instruct"
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="Qwen2-VL dependency xformers incompatible with ROCm")
def test_qwen2vl_lora(qwen2vl_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_num_seqs=2,
enable_lora=True,
max_loras=2,
max_lora_rank=16,
trust_remote_code=True,
mm_processor_kwargs={
"min_pixels": 28 * 28,
"max_pixels": 1280 * 28 * 28,
},
max_model_len=4096,
)
output1 = do_sample(llm, qwen2vl_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output1[i])
"""Test Qwen 2.0 VL model with LoRA"""
config = TestConfig(model_path=QWEN2VL_MODEL_PATH,
lora_path=qwen2vl_lora_files)
tester = Qwen2VLTester(config)
output2 = do_sample(llm, qwen2vl_lora_files, lora_id=2)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output2[i])
# Test with different LoRA IDs
for lora_id in [1, 2]:
tester.run_test(TEST_IMAGES,
expected_outputs=EXPECTED_OUTPUTS,
lora_id=lora_id)
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="Qwen2.5-VL dependency xformers incompatible with ROCm",
)
@pytest.mark.skipif(
Version(TRANSFORMERS_VERSION) < Version("4.49.0"),
reason="Qwen2.5-VL require transformers version no lower than 4.49.0",
)
def test_qwen25vl_lora(qwen25vl_lora_files):
"""Test Qwen 2.5 VL model with LoRA"""
config = TestConfig(model_path=QWEN25VL_MODEL_PATH,
lora_path=qwen25vl_lora_files)
tester = Qwen2VLTester(config)
# Test with different LoRA IDs
for lora_id in [1, 2]:
tester.run_test(TEST_IMAGES,
expected_outputs=EXPECTED_OUTPUTS,
lora_id=lora_id)

View File

@ -734,16 +734,17 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
"up_proj",
],
}
# LoRA specific attributes, TODO: double check
# LoRA specific attributes
supported_lora_modules = [
# language model
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
"gate_proj"
"up_proj",
"down_proj", # Same name with vision encoder
# vision tower
"qkv",
"gate_proj",
"up_proj",
"attn.proj", # Distinguish patch_embed.proj
"fc1",
"fc2",
@ -751,6 +752,7 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
"mlp.0",
"mlp.2"
]
embedding_modules = {}
embedding_padding_modules = []