[Misc] Qwen2.5 VL support LoRA (#13261)
This commit is contained in:
parent
473f51cfd9
commit
512368e34a
@ -854,7 +854,7 @@ See [this page](#generative-models) for more information on how to use generativ
|
|||||||
* Qwen2.5-VL
|
* Qwen2.5-VL
|
||||||
* T + I<sup>E+</sup> + V<sup>E+</sup>
|
* T + I<sup>E+</sup> + V<sup>E+</sup>
|
||||||
* `Qwen/Qwen2.5-VL-3B-Instruct`, `Qwen/Qwen2.5-VL-72B-Instruct`, etc.
|
* `Qwen/Qwen2.5-VL-3B-Instruct`, `Qwen/Qwen2.5-VL-72B-Instruct`, etc.
|
||||||
*
|
* ✅︎
|
||||||
* ✅︎
|
* ✅︎
|
||||||
* ✅︎
|
* ✅︎
|
||||||
- * `UltravoxModel`
|
- * `UltravoxModel`
|
||||||
|
@ -237,6 +237,11 @@ def qwen2vl_lora_files():
|
|||||||
return snapshot_download(repo_id="jeeejeee/qwen2-vl-lora-pokemon")
|
return snapshot_download(repo_id="jeeejeee/qwen2-vl-lora-pokemon")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="session")
|
||||||
|
def qwen25vl_lora_files():
|
||||||
|
return snapshot_download(repo_id="jeeejeee/qwen25-vl-lora-pokemon")
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(scope="session")
|
@pytest.fixture(scope="session")
|
||||||
def tinyllama_lora_files():
|
def tinyllama_lora_files():
|
||||||
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")
|
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")
|
||||||
|
@ -1,15 +1,37 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
from dataclasses import dataclass
|
||||||
from typing import List
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
from packaging.version import Version
|
||||||
|
from transformers import __version__ as TRANSFORMERS_VERSION
|
||||||
|
|
||||||
import vllm
|
import vllm
|
||||||
from vllm.assets.image import ImageAsset
|
from vllm.assets.image import ImageAsset
|
||||||
from vllm.lora.request import LoRARequest
|
from vllm.lora.request import LoRARequest
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
|
|
||||||
MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
|
|
||||||
|
@dataclass
|
||||||
|
class TestConfig:
|
||||||
|
model_path: str
|
||||||
|
lora_path: str
|
||||||
|
max_num_seqs: int = 2
|
||||||
|
max_loras: int = 2
|
||||||
|
max_lora_rank: int = 16
|
||||||
|
max_model_len: int = 4096
|
||||||
|
mm_processor_kwargs: Optional[Dict[str, int]] = None
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.mm_processor_kwargs is None:
|
||||||
|
self.mm_processor_kwargs = {
|
||||||
|
"min_pixels": 28 * 28,
|
||||||
|
"max_pixels": 1280 * 28 * 28,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2VLTester:
|
||||||
|
"""Test helper for Qwen2 VL models with LoRA"""
|
||||||
|
|
||||||
PROMPT_TEMPLATE = (
|
PROMPT_TEMPLATE = (
|
||||||
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>"
|
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>"
|
||||||
@ -17,67 +39,105 @@ PROMPT_TEMPLATE = (
|
|||||||
"What is in the image?<|im_end|>\n"
|
"What is in the image?<|im_end|>\n"
|
||||||
"<|im_start|>assistant\n")
|
"<|im_start|>assistant\n")
|
||||||
|
|
||||||
IMAGE_ASSETS = [
|
def __init__(self, config: TestConfig):
|
||||||
|
self.config = config
|
||||||
|
self.llm = self._initialize_llm()
|
||||||
|
|
||||||
|
def _initialize_llm(self) -> vllm.LLM:
|
||||||
|
"""Initialize the LLM with given configuration"""
|
||||||
|
return vllm.LLM(
|
||||||
|
model=self.config.model_path,
|
||||||
|
max_num_seqs=self.config.max_num_seqs,
|
||||||
|
enable_lora=True,
|
||||||
|
max_loras=self.config.max_loras,
|
||||||
|
max_lora_rank=self.config.max_lora_rank,
|
||||||
|
trust_remote_code=True,
|
||||||
|
mm_processor_kwargs=self.config.mm_processor_kwargs,
|
||||||
|
max_model_len=self.config.max_model_len,
|
||||||
|
)
|
||||||
|
|
||||||
|
def run_test(self,
|
||||||
|
images: List[ImageAsset],
|
||||||
|
expected_outputs: List[str],
|
||||||
|
lora_id: Optional[int] = None,
|
||||||
|
temperature: float = 0,
|
||||||
|
max_tokens: int = 5) -> List[str]:
|
||||||
|
|
||||||
|
sampling_params = vllm.SamplingParams(
|
||||||
|
temperature=temperature,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
)
|
||||||
|
inputs = [{
|
||||||
|
"prompt": self.PROMPT_TEMPLATE,
|
||||||
|
"multi_modal_data": {
|
||||||
|
"image": asset.pil_image
|
||||||
|
},
|
||||||
|
} for asset in images]
|
||||||
|
|
||||||
|
lora_request = LoRARequest(str(lora_id), lora_id,
|
||||||
|
self.config.lora_path)
|
||||||
|
outputs = self.llm.generate(inputs,
|
||||||
|
sampling_params,
|
||||||
|
lora_request=lora_request)
|
||||||
|
generated_texts = [
|
||||||
|
output.outputs[0].text.strip() for output in outputs
|
||||||
|
]
|
||||||
|
|
||||||
|
# Validate outputs
|
||||||
|
for generated, expected in zip(generated_texts, expected_outputs):
|
||||||
|
assert expected.startswith(
|
||||||
|
generated), f"Generated text {generated} doesn't "
|
||||||
|
f"match expected pattern {expected}"
|
||||||
|
|
||||||
|
return generated_texts
|
||||||
|
|
||||||
|
|
||||||
|
TEST_IMAGES = [
|
||||||
ImageAsset("stop_sign"),
|
ImageAsset("stop_sign"),
|
||||||
ImageAsset("cherry_blossom"),
|
ImageAsset("cherry_blossom"),
|
||||||
]
|
]
|
||||||
|
|
||||||
# After fine-tuning with LoRA, all generated content should start begin `A`.
|
EXPECTED_OUTPUTS = [
|
||||||
EXPECTED_OUTPUT = [
|
|
||||||
"A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501
|
"A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501
|
||||||
"A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501
|
"A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501
|
||||||
]
|
]
|
||||||
|
|
||||||
|
QWEN2VL_MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
|
||||||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
QWEN25VL_MODEL_PATH = "Qwen/Qwen2.5-VL-3B-Instruct"
|
||||||
sampling_params = vllm.SamplingParams(
|
|
||||||
temperature=0,
|
|
||||||
max_tokens=5,
|
|
||||||
)
|
|
||||||
|
|
||||||
inputs = [{
|
|
||||||
"prompt": PROMPT_TEMPLATE,
|
|
||||||
"multi_modal_data": {
|
|
||||||
"image": asset.pil_image
|
|
||||||
},
|
|
||||||
} for asset in IMAGE_ASSETS]
|
|
||||||
|
|
||||||
outputs = llm.generate(
|
|
||||||
inputs,
|
|
||||||
sampling_params,
|
|
||||||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
|
||||||
if lora_id else None,
|
|
||||||
)
|
|
||||||
# Print the outputs.
|
|
||||||
generated_texts: List[str] = []
|
|
||||||
for output in outputs:
|
|
||||||
generated_text = output.outputs[0].text.strip()
|
|
||||||
generated_texts.append(generated_text)
|
|
||||||
print(f"Generated text: {generated_text!r}")
|
|
||||||
return generated_texts
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.xfail(
|
@pytest.mark.xfail(
|
||||||
current_platform.is_rocm(),
|
current_platform.is_rocm(),
|
||||||
reason="Qwen2-VL dependency xformers incompatible with ROCm")
|
reason="Qwen2-VL dependency xformers incompatible with ROCm")
|
||||||
def test_qwen2vl_lora(qwen2vl_lora_files):
|
def test_qwen2vl_lora(qwen2vl_lora_files):
|
||||||
llm = vllm.LLM(
|
"""Test Qwen 2.0 VL model with LoRA"""
|
||||||
MODEL_PATH,
|
config = TestConfig(model_path=QWEN2VL_MODEL_PATH,
|
||||||
max_num_seqs=2,
|
lora_path=qwen2vl_lora_files)
|
||||||
enable_lora=True,
|
tester = Qwen2VLTester(config)
|
||||||
max_loras=2,
|
|
||||||
max_lora_rank=16,
|
|
||||||
trust_remote_code=True,
|
|
||||||
mm_processor_kwargs={
|
|
||||||
"min_pixels": 28 * 28,
|
|
||||||
"max_pixels": 1280 * 28 * 28,
|
|
||||||
},
|
|
||||||
max_model_len=4096,
|
|
||||||
)
|
|
||||||
output1 = do_sample(llm, qwen2vl_lora_files, lora_id=1)
|
|
||||||
for i in range(len(EXPECTED_OUTPUT)):
|
|
||||||
assert EXPECTED_OUTPUT[i].startswith(output1[i])
|
|
||||||
|
|
||||||
output2 = do_sample(llm, qwen2vl_lora_files, lora_id=2)
|
# Test with different LoRA IDs
|
||||||
for i in range(len(EXPECTED_OUTPUT)):
|
for lora_id in [1, 2]:
|
||||||
assert EXPECTED_OUTPUT[i].startswith(output2[i])
|
tester.run_test(TEST_IMAGES,
|
||||||
|
expected_outputs=EXPECTED_OUTPUTS,
|
||||||
|
lora_id=lora_id)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.xfail(
|
||||||
|
current_platform.is_rocm(),
|
||||||
|
reason="Qwen2.5-VL dependency xformers incompatible with ROCm",
|
||||||
|
)
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
Version(TRANSFORMERS_VERSION) < Version("4.49.0"),
|
||||||
|
reason="Qwen2.5-VL require transformers version no lower than 4.49.0",
|
||||||
|
)
|
||||||
|
def test_qwen25vl_lora(qwen25vl_lora_files):
|
||||||
|
"""Test Qwen 2.5 VL model with LoRA"""
|
||||||
|
config = TestConfig(model_path=QWEN25VL_MODEL_PATH,
|
||||||
|
lora_path=qwen25vl_lora_files)
|
||||||
|
tester = Qwen2VLTester(config)
|
||||||
|
|
||||||
|
# Test with different LoRA IDs
|
||||||
|
for lora_id in [1, 2]:
|
||||||
|
tester.run_test(TEST_IMAGES,
|
||||||
|
expected_outputs=EXPECTED_OUTPUTS,
|
||||||
|
lora_id=lora_id)
|
||||||
|
@ -734,16 +734,17 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|||||||
"up_proj",
|
"up_proj",
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
# LoRA specific attributes, TODO: double check
|
# LoRA specific attributes
|
||||||
supported_lora_modules = [
|
supported_lora_modules = [
|
||||||
|
# language model
|
||||||
"qkv_proj",
|
"qkv_proj",
|
||||||
"o_proj",
|
"o_proj",
|
||||||
"gate_up_proj",
|
"gate_up_proj",
|
||||||
"down_proj",
|
"down_proj", # Same name with vision encoder
|
||||||
"gate_proj"
|
|
||||||
"up_proj",
|
|
||||||
# vision tower
|
# vision tower
|
||||||
"qkv",
|
"qkv",
|
||||||
|
"gate_proj",
|
||||||
|
"up_proj",
|
||||||
"attn.proj", # Distinguish patch_embed.proj
|
"attn.proj", # Distinguish patch_embed.proj
|
||||||
"fc1",
|
"fc1",
|
||||||
"fc2",
|
"fc2",
|
||||||
@ -751,6 +752,7 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|||||||
"mlp.0",
|
"mlp.0",
|
||||||
"mlp.2"
|
"mlp.2"
|
||||||
]
|
]
|
||||||
|
|
||||||
embedding_modules = {}
|
embedding_modules = {}
|
||||||
embedding_padding_modules = []
|
embedding_padding_modules = []
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user