[Bugfix] Fix phi3v batch inference when images have different aspect ratio (#7392)
This commit is contained in:
parent
baa240252e
commit
4c5d8e8ea9
@ -81,7 +81,10 @@ def run_test(
|
||||
|
||||
inputs_per_image = [(
|
||||
[prompt for _ in size_factors],
|
||||
[rescale_image_size(image, factor) for factor in size_factors],
|
||||
[
|
||||
rescale_image_size(image, factor, transpose=idx)
|
||||
for idx, factor in enumerate(size_factors)
|
||||
],
|
||||
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
||||
|
||||
# NOTE: take care of the order. run vLLM first, and then run HF.
|
||||
|
@ -114,5 +114,5 @@ def test_traces(trace_service):
|
||||
SpanAttributes.LLM_LATENCY_TIME_TO_FIRST_TOKEN) == ttft
|
||||
e2e_time = metrics.finished_time - metrics.arrival_time
|
||||
assert attributes.get(SpanAttributes.LLM_LATENCY_E2E) == e2e_time
|
||||
assert attributes.get(SpanAttributes.LLM_LATENCY_TIME_IN_SCHEDULER
|
||||
) == metrics.scheduler_time
|
||||
assert attributes.get(
|
||||
SpanAttributes.LLM_LATENCY_TIME_IN_SCHEDULER) == metrics.scheduler_time
|
||||
|
@ -189,7 +189,7 @@ class Phi3HDImageEmbedding(Phi3ImageEmbeddingBase):
|
||||
global_image_features_hd_newline = self.add_image_newline(
|
||||
global_image_features_hd)
|
||||
|
||||
all_image_embeddings = []
|
||||
batch_image_features_proj = []
|
||||
# need a for loop to process each image because of different image sizes
|
||||
# (patch arrangement is different for each image)
|
||||
for i, img_size in enumerate(image_sizes):
|
||||
@ -207,19 +207,17 @@ class Phi3HDImageEmbedding(Phi3ImageEmbeddingBase):
|
||||
sub_image_features_hd)
|
||||
|
||||
# [sub features, separator, global features]
|
||||
all_image_embeddings.append(
|
||||
torch.cat([
|
||||
sub_image_features_hd_newline.squeeze(
|
||||
0), # (h_crop*12*(w_crop*12+1), 4096)
|
||||
self.glb_GN.squeeze(0),
|
||||
global_image_features_hd_newline[i],
|
||||
]))
|
||||
image_embeddings = torch.cat([
|
||||
sub_image_features_hd_newline.squeeze(
|
||||
0), # (h_crop*12*(w_crop*12+1), 4096)
|
||||
self.glb_GN.squeeze(0),
|
||||
global_image_features_hd_newline[i],
|
||||
])
|
||||
img_proj = self.img_projection(
|
||||
image_embeddings.to(target_device, target_dtype))
|
||||
batch_image_features_proj.append(img_proj)
|
||||
|
||||
image_features_proj = self.img_projection(
|
||||
torch.stack(all_image_embeddings).to(target_device, target_dtype)
|
||||
) # (num_images, (h_crop*12*(w_crop*12+1)+1), hidden_size)
|
||||
|
||||
return image_features_proj
|
||||
return batch_image_features_proj
|
||||
|
||||
def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
|
||||
"""
|
||||
|
@ -90,8 +90,13 @@ def load_image_from_base64(image: Union[bytes, str]) -> Image.Image:
|
||||
return _load_image_from_bytes(base64.b64decode(image))
|
||||
|
||||
|
||||
def rescale_image_size(image: Image.Image, size_factor: float) -> Image.Image:
|
||||
def rescale_image_size(image: Image.Image,
|
||||
size_factor: float,
|
||||
transpose: int = -1) -> Image.Image:
|
||||
"""Rescale the dimensions of an image by a constant factor."""
|
||||
new_width = int(image.width * size_factor)
|
||||
new_height = int(image.height * size_factor)
|
||||
return image.resize((new_width, new_height))
|
||||
image = image.resize((new_width, new_height))
|
||||
if transpose >= 0:
|
||||
image = image.transpose(Image.Transpose(transpose))
|
||||
return image
|
||||
|
Loading…
x
Reference in New Issue
Block a user