[🚀 Ready to be merged] Added support for Jais models (#3183)

This commit is contained in:
Lalit Pradhan 2024-03-21 13:45:24 +04:00 committed by GitHub
parent 3bbff9e5ab
commit 4c07dd28c0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 596 additions and 3 deletions

View File

@ -76,6 +76,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.) - GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.) - InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.) - InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.) - LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.) - Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.) - Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)

View File

@ -66,7 +66,11 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`InternLM2ForCausalLM` * - :code:`InternLM2ForCausalLM`
- InternLM2 - InternLM2
- :code:`internlm/internlm2-7b`, :code:`internlm/internlm2-chat-7b`, etc. - :code:`internlm/internlm2-7b`, :code:`internlm/internlm2-chat-7b`, etc.
- -
* - :code:`JAISLMHeadModel`
- Jais
- :code:`core42/jais-13b`, :code:`core42/jais-13b-chat`, :code:`core42/jais-30b-v3`, :code:`core42/jais-30b-chat-v3`, etc.
-
* - :code:`LlamaForCausalLM` * - :code:`LlamaForCausalLM`
- LLaMA, LLaMA-2, Vicuna, Alpaca, Yi - LLaMA, LLaMA-2, Vicuna, Alpaca, Yi
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc. - :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.

View File

@ -27,6 +27,7 @@ _MODELS = {
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"), "GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"), "InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"), "InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"), "LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
# For decapoda-research/llama-* # For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"), "LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),

View File

@ -242,8 +242,7 @@ class GPT2LMHeadModel(nn.Module):
logits: torch.Tensor, logits: torch.Tensor,
sampling_metadata: SamplingMetadata, sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]: ) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head_weight, logits, next_tokens = self.sampler(logits, sampling_metadata)
sampling_metadata)
return next_tokens return next_tokens
def load_weights(self, def load_weights(self,

View File

@ -0,0 +1,351 @@
# coding=utf-8
# Adapted from
# https://huggingface.co/core42/jais-30b-chat-v3/blob/main/modeling_jais.py
# Copyright 2023 The vLLM team.
# Copyright 2023 the Jais authors and HuggingFace Inc. team. All rights
# reserved.
# Copyright 2023 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Jais model compatible with HuggingFace weights."""
import math
from typing import List, Optional, Tuple
import torch
from torch import nn
from vllm.transformers_utils.configs import JAISConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import Attention
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, )
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size,
get_tensor_model_parallel_rank,
)
from vllm.model_executor.weight_utils import (
default_weight_loader,
hf_model_weights_iterator,
)
from vllm.sequence import SamplerOutput
from vllm.model_executor.sampling_metadata import SamplingMetadata
KVCache = Tuple[torch.Tensor, torch.Tensor]
class SwiGLUActivation(nn.Module):
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
return x1 * nn.functional.silu(x2)
def _get_alibi_slopes(n):
def get_slopes_power_of_2(n):
start = 2**(-(2**-(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2**math.floor(math.log2(n))
return (get_slopes_power_of_2(closest_power_of_2) + _get_alibi_slopes(
2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
class JAISAttention(nn.Module):
def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.hidden_size = config.hidden_size
total_num_heads = config.num_attention_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = self.hidden_size // total_num_heads
if hasattr(config, "scale_qk_dot_by_d"):
config.mup_scale_qk_dot_by_d = config.scale_qk_dot_by_d
self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
self.scale = self.head_dim**-self.attn_scale_power
self.c_attn = QKVParallelLinear(
self.hidden_size,
self.head_dim,
total_num_heads,
bias=True,
linear_method=linear_method,
)
self.c_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
linear_method=linear_method,
)
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end]
self.attn = Attention(
self.num_heads,
self.head_dim,
scale=self.scale,
alibi_slopes=alibi_slopes,
)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(q, k, v, key_cache, value_cache,
input_metadata)
attn_output, _ = self.c_proj(attn_output)
return attn_output
class JAISMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.hidden_size
self.swiglu = config.activation_function == "swiglu"
self.c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
linear_method=linear_method,
)
self.c_fc2 = (ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
linear_method=linear_method,
) if self.swiglu else None)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
linear_method=linear_method,
)
self.act = SwiGLUActivation()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.swiglu:
hidden_states2, _ = self.c_fc2(hidden_states)
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = (self.act(hidden_states, hidden_states2)
if self.swiglu else self.act(hidden_states))
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class JAISBlock(nn.Module):
def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
hidden_size = config.hidden_size
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
hidden_size)
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = JAISAttention(config, linear_method)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = JAISMLP(inner_dim, config, linear_method)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
)
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states
class JAISModel(nn.Module):
def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
assert not config.add_cross_attention
assert not config.scale_attn_by_inverse_layer_idx
assert not config.reorder_and_upcast_attn
self.embed_dim = config.hidden_size
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
self.wpe = (nn.Embedding(config.max_position_embeddings,
self.embed_dim)
if config.position_embedding_type != "alibi" else None)
if hasattr(config, "embeddings_scale"):
self.embeddings_scale = config.embeddings_scale
else:
self.embeddings_scale = config.mup_embeddings_scale
self.h = nn.ModuleList([
JAISBlock(config, linear_method)
for _ in range(config.num_hidden_layers)
])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
inputs_embeds = self.wte(input_ids)
if self.wpe is not None:
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
else:
hidden_states = inputs_embeds
hidden_states *= torch.tensor(float(self.embeddings_scale),
dtype=hidden_states.dtype)
for i in range(len(self.h)):
layer = self.h[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class JAISLMHeadModel(nn.Module):
def __init__(
self,
config: JAISConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
self.transformer = JAISModel(config, linear_method)
self.lm_head_weight = self.transformer.wte.weight
if hasattr(config, "width_scale"):
self.output_logits_scale = config.width_scale
else:
self.output_logits_scale = (config.mup_output_alpha *
config.mup_width_scale)
self.logits_processor = LogitsProcessor(vocab_size=config.vocab_size,
scale=self.output_logits_scale)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head_weight, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "lm_head.weight" in name:
# GPT-2 ties the weights of the embedding layer and the final
# linear layer.
continue
if ".attn.bias" in name or ".attn.masked_bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
if "relative_pe" in name:
continue
if not name.startswith("transformer."):
name = "transformer." + name
param = params_dict[name]
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
# Because of this, we need to transpose the weights.
# Note(zhuohan): the logic below might break quantized models.
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
if conv1d_weight_name not in name:
continue
if not name.endswith(".weight"):
continue
loaded_weight = loaded_weight.t()
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -10,6 +10,7 @@ _CONFIG_REGISTRY = {
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct) "RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct) "RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
"starcoder2": Starcoder2Config, "starcoder2": Starcoder2Config,
"jais": JAISConfig,
} }

View File

@ -5,10 +5,12 @@ from vllm.transformers_utils.configs.mpt import MPTConfig
# `FalconConfig` class from the official HuggingFace transformers library. # `FalconConfig` class from the official HuggingFace transformers library.
from vllm.transformers_utils.configs.falcon import RWConfig from vllm.transformers_utils.configs.falcon import RWConfig
from vllm.transformers_utils.configs.starcoder2 import Starcoder2Config from vllm.transformers_utils.configs.starcoder2 import Starcoder2Config
from vllm.transformers_utils.configs.jais import JAISConfig
__all__ = [ __all__ = [
"ChatGLMConfig", "ChatGLMConfig",
"MPTConfig", "MPTConfig",
"RWConfig", "RWConfig",
"Starcoder2Config", "Starcoder2Config",
"JAISConfig",
] ]

View File

@ -0,0 +1,234 @@
# coding=utf-8
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Copyright 2023 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JAIS configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class JAISConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a
[`JAISModel`]. It is used to instantiate a JAIS model according to the
specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used
to control the model outputs. Read the documentation from
[`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the JAIS model. Defines the number of different
tokens that can be represented by the
`inputs_ids` passed when calling [`JAISModel`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used
with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the
Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set
it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu"`):
Activation function, to be selected in the list
`["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in
the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for
initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values
attentions (not used by all models).
scale_attn_by_inverse_layer_idx (`bool`, *optional*,
defaults to `False`):
Whether to additionally scale attention weights by
`1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention
(dot-product)
and upcast attention dot-product/softmax to float() when training
with mixed precision.
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
Positional embedding can be either `"alibi"` or `"learned"`.
mup_width_scale (`float`, *optional*, defaults to 1.0):
muP parameter to scale learning rate and initializers. Calculated
as (`d_model,0 / d_model`), where
`d_model` is the model's width and `d_model,0` is the proxy
model's width.
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
muP parameter to scale token and position embeddings.
mup_output_alpha (`float`, *optional*, defaults to 1.0):
muP parameter to scale output logits
(`output_logits_scale = mup_output_alpha * mup_width_scale`).
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
Scale attention weights by dividing by hidden_size instead of
sqrt(hidden_size). Need to set scale_attn_weights to `True` as
well.
alibi_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for ALiBi
embeddings. Currently only supports linear
scaling strategy. Can specify either the scaling `factor` (must be
a float greater than 1) for fixed scaling
or `train_seq_len` for dynamic scaling on input samples with
sequence length > `train_seq_len`. The expected
formats are `{"type": strategy name, "factor": scaling factor}` or
`{"type": strategy name,
"train_seq_len": training sequence length}`.
architectures (`List`, *optional*, defaults to ['JAISLMHeadModel']):
architecture names for Jais.
Example:
```python
>>> from transformers import JAISConfig, JAISModel
>>> # Initializing a JAIS configuration
>>> configuration = JAISConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = JAISModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "jais"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
position_embedding_type="learned",
mup_width_scale=1.0,
mup_embeddings_scale=1.0,
mup_output_alpha=1.0,
mup_scale_qk_dot_by_d=False,
alibi_scaling=None,
architectures=None,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
self.reorder_and_upcast_attn = reorder_and_upcast_attn
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.position_embedding_type = position_embedding_type
self.mup_width_scale = mup_width_scale
self.mup_embeddings_scale = mup_embeddings_scale
self.mup_output_alpha = mup_output_alpha
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
self.alibi_scaling = alibi_scaling
self._alibi_scaling_validation()
if architectures is None:
architectures = ["JAISLMHeadModel"]
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
architectures=architectures,
**kwargs,
)
def _alibi_scaling_validation(self):
"""
Validate the `alibi_scaling` configuration.
"""
if self.alibi_scaling is None:
return
if (not isinstance(self.alibi_scaling, dict)
or len(self.alibi_scaling) != 2):
raise ValueError(
"`alibi_scaling` must be a dictionary with two fields,"
"`type` and `factor` or `type` and `train_seq_len`, "
f"got {self.alibi_scaling}")
alibi_scaling_type = self.alibi_scaling.get("type", None)
alibi_scaling_factor = self.alibi_scaling.get("factor", None)
alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
if alibi_scaling_type is None or alibi_scaling_type != "linear":
raise ValueError(f"`alibi_scaling`'s type field must be 'linear',"
f"got {alibi_scaling_type}")
if (alibi_scaling_factor is not None
and not isinstance(alibi_scaling_factor, float)
or alibi_scaling_factor <= 1.0):
raise ValueError(
f"`alibi_scaling`'s factor field must be a float > 1.0,"
f"got {alibi_scaling_factor}")
if (alibi_dynamic_scaling is not None
and not isinstance(alibi_dynamic_scaling, int)
or alibi_dynamic_scaling <= 1):
raise ValueError(
f"`alibi_scaling`'s `train_seq_len` field must be an"
f"integer > 1, got {alibi_dynamic_scaling}")