[Doc] Update benchmarks README (#14646)

Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
This commit is contained in:
Jennifer Zhao 2025-03-11 19:23:04 -07:00 committed by GitHub
parent 47532cd9f4
commit 4a42b9f5d6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,29 +1,181 @@
# Benchmarking vLLM # Benchmarking vLLM
## Downloading the ShareGPT dataset This README guides you through running benchmark tests with the extensive
datasets supported on vLLM. Its a living document, updated as new features and datasets
become available.
You can download the dataset by running: ## Dataset Overview
<table style="width:100%; border-collapse: collapse;">
<thead>
<tr>
<th style="width:15%; text-align: left;">Dataset</th>
<th style="width:10%; text-align: center;">Online</th>
<th style="width:10%; text-align: center;">Offline</th>
<th style="width:65%; text-align: left;">Data Path</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ShareGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
</tr>
<tr>
<td><strong>BurstGPT</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
</tr>
<tr>
<td><strong>Sonnet</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
</tr>
<tr>
<td><strong>Random</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;"></td>
<td><code>synthetic</code></td>
</tr>
<tr>
<td><strong>HuggingFace</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;">🚧</td>
<td>Specify your dataset path on HuggingFace</td>
</tr>
<tr>
<td><strong>VisionArena</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;">🚧</td>
<td><code>lmarena-ai/vision-arena-bench-v0.1</code> (a HuggingFace dataset)</td>
</tr>
</tbody>
</table>
✅: supported
🚧: to be supported
**Note**: VisionArenas `dataset-name` should be set to `hf`
---
## Example - Online Benchmark
First start serving your model
```bash ```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
vllm serve ${MODEL_NAME} --disable-log-requests
``` ```
## Downloading the ShareGPT4V dataset Then run the benchmarking script
The json file refers to several image datasets (coco, llava, etc.). The benchmark scripts
will ignore a datapoint if the referred image is missing.
```bash ```bash
wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/resolve/main/sharegpt4v_instruct_gpt4-vision_cap100k.json # download dataset
mkdir coco -p # wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
wget http://images.cocodataset.org/zips/train2017.zip -O coco/train2017.zip MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
unzip coco/train2017.zip -d coco/ NUM_PROMPTS=10
BACKEND="openai-chat"
DATASET_NAME="sharegpt"
DATASET_PATH="<your data path>/ShareGPT_V3_unfiltered_cleaned_split.json"
python3 benchmarks/benchmark_serving.py --backend ${BACKEND} --model ${MODEL_NAME} --endpoint /v1/chat/completions --dataset-name ${DATASET_NAME} --dataset-path ${DATASET_PATH} --num-prompts ${NUM_PROMPTS}
``` ```
# Downloading the BurstGPT dataset If successful, you will see the following output
You can download the BurstGPT v1.1 dataset by running: ```
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
---------------Time to First Token----------------
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
---------------Inter-token Latency----------------
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
==================================================
```
### VisionArena Benchmark for Vision Language Models
```bash ```bash
wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv # need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
``` ```
```bash
MODEL_NAME="Qwen/Qwen2-VL-7B-Instruct"
NUM_PROMPTS=10
BACKEND="openai-chat"
DATASET_NAME="hf"
DATASET_PATH="lmarena-ai/vision-arena-bench-v0.1"
DATASET_SPLIT='train'
python3 benchmarks/benchmark_serving.py \
--backend "${BACKEND}" \
--model "${MODEL_NAME}" \
--endpoint "/v1/chat/completions" \
--dataset-name "${DATASET_NAME}" \
--dataset-path "${DATASET_PATH}" \
--hf-split "${DATASET_SPLIT}" \
--num-prompts "${NUM_PROMPTS}"
```
---
## Example - Offline Throughput Benchmark
```bash
MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
NUM_PROMPTS=10
DATASET_NAME="sonnet"
DATASET_PATH="benchmarks/sonnet.txt"
python3 benchmarks/benchmark_throughput.py \
--model "${MODEL_NAME}" \
--dataset-name "${DATASET_NAME}" \
--dataset-path "${DATASET_PATH}" \
--num-prompts "${NUM_PROMPTS}"
```
If successful, you will see the following output
```
Throughput: 7.35 requests/s, 4789.20 total tokens/s, 1102.83 output tokens/s
```
### Benchmark with LoRA Adapters
``` bash
MODEL_NAME="meta-llama/Llama-2-7b-hf"
BACKEND="vllm"
DATASET_NAME="sharegpt"
DATASET_PATH="/home/jovyan/data/vllm_benchmark_datasets/ShareGPT_V3_unfiltered_cleaned_split.json"
NUM_PROMPTS=10
MAX_LORAS=2
MAX_LORA_RANK=8
ENABLE_LORA="--enable-lora"
LORA_PATH="yard1/llama-2-7b-sql-lora-test"
python3 benchmarks/benchmark_throughput.py \
--model "${MODEL_NAME}" \
--backend "${BACKEND}" \
--dataset_path "${DATASET_PATH}" \
--dataset_name "${DATASET_NAME}" \
--num-prompts "${NUM_PROMPTS}" \
--max-loras "${MAX_LORAS}" \
--max-lora-rank "${MAX_LORA_RANK}" \
${ENABLE_LORA} \
--lora-path "${LORA_PATH}"
```