[Misc] Some minor simplifications to detokenization logic (#3670)
Some simplifications made for clarity. Also moves detokenization-related functions from tokenizer.py to detokenizer.py.
This commit is contained in:
parent
f03cc667a0
commit
49782fcb76
@ -4,8 +4,8 @@ import pytest
|
|||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
from vllm.sequence import Logprob, SamplingParams, Sequence, SequenceGroup
|
from vllm.sequence import Logprob, SamplingParams, Sequence, SequenceGroup
|
||||||
from vllm.transformers_utils.detokenizer import Detokenizer
|
from vllm.transformers_utils.detokenizer import (Detokenizer,
|
||||||
from vllm.transformers_utils.tokenizer import detokenize_incrementally
|
detokenize_incrementally)
|
||||||
from vllm.transformers_utils.tokenizer_group import get_tokenizer_group
|
from vllm.transformers_utils.tokenizer_group import get_tokenizer_group
|
||||||
|
|
||||||
TRUTH = [
|
TRUTH = [
|
||||||
|
@ -1,10 +1,8 @@
|
|||||||
from typing import Dict, List, Optional
|
from typing import Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
from transformers import PreTrainedTokenizer
|
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||||
|
|
||||||
from vllm.sequence import Logprob, SamplingParams, Sequence, SequenceGroup
|
from vllm.sequence import Logprob, SamplingParams, Sequence, SequenceGroup
|
||||||
from vllm.transformers_utils.tokenizer import (convert_prompt_ids_to_tokens,
|
|
||||||
detokenize_incrementally)
|
|
||||||
from vllm.transformers_utils.tokenizer_group.base_tokenizer_group import (
|
from vllm.transformers_utils.tokenizer_group.base_tokenizer_group import (
|
||||||
BaseTokenizerGroup)
|
BaseTokenizerGroup)
|
||||||
|
|
||||||
@ -148,10 +146,160 @@ class Detokenizer:
|
|||||||
)
|
)
|
||||||
sample_logprob.decoded_token = new_text
|
sample_logprob.decoded_token = new_text
|
||||||
|
|
||||||
if seq.tokens is None:
|
seq.tokens.extend(new_tokens)
|
||||||
seq.tokens = new_tokens
|
|
||||||
else:
|
|
||||||
seq.tokens.extend(new_tokens)
|
|
||||||
seq.prefix_offset = prefix_offset
|
seq.prefix_offset = prefix_offset
|
||||||
seq.read_offset = read_offset
|
seq.read_offset = read_offset
|
||||||
seq.output_text += new_decoded_token_text
|
seq.output_text += new_decoded_token_text
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_tokens_to_string_with_added_encoders(
|
||||||
|
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
||||||
|
output_tokens: List[str],
|
||||||
|
skip_special_tokens: bool,
|
||||||
|
spaces_between_special_tokens: bool,
|
||||||
|
) -> str:
|
||||||
|
# Adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
|
||||||
|
# NOTE(woosuk): The following code is slow because it runs a for loop over
|
||||||
|
# the output_tokens. In Python, running a for loop over a list can be slow
|
||||||
|
# even when the loop body is very simple.
|
||||||
|
sub_texts = []
|
||||||
|
current_sub_text = []
|
||||||
|
all_special_tokens = set(tokenizer.all_special_tokens)
|
||||||
|
for token in output_tokens:
|
||||||
|
if skip_special_tokens and token in all_special_tokens:
|
||||||
|
continue
|
||||||
|
if token in tokenizer.get_added_vocab():
|
||||||
|
if current_sub_text:
|
||||||
|
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
|
||||||
|
sub_texts.append(sub_text)
|
||||||
|
current_sub_text = []
|
||||||
|
sub_texts.append(token)
|
||||||
|
else:
|
||||||
|
current_sub_text.append(token)
|
||||||
|
if current_sub_text:
|
||||||
|
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
|
||||||
|
sub_texts.append(sub_text)
|
||||||
|
if spaces_between_special_tokens:
|
||||||
|
return " ".join(sub_texts)
|
||||||
|
else:
|
||||||
|
return "".join(sub_texts)
|
||||||
|
|
||||||
|
|
||||||
|
# 5 is an arbitrary value that should work for all
|
||||||
|
# tokenizers (bigger = more conservative).
|
||||||
|
INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET = 5
|
||||||
|
|
||||||
|
|
||||||
|
def convert_prompt_ids_to_tokens(
|
||||||
|
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
||||||
|
prompt_ids: List[int],
|
||||||
|
skip_special_tokens: bool = False,
|
||||||
|
) -> Tuple[List[str], int, int]:
|
||||||
|
"""Converts the prompt ids to tokens and returns the tokens and offsets
|
||||||
|
for incremental detokenization.
|
||||||
|
|
||||||
|
Note that not all tokens are converted to strings. Only the tokens that
|
||||||
|
are necessary for incremental detokenization are converted to strings.
|
||||||
|
"""
|
||||||
|
# We do not need to convert the whole prompt to tokens.
|
||||||
|
# Offset a little more in case we have special tokens.
|
||||||
|
new_tokens = tokenizer.convert_ids_to_tokens(
|
||||||
|
prompt_ids[-INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET - 2:],
|
||||||
|
skip_special_tokens=skip_special_tokens)
|
||||||
|
read_offset = len(new_tokens)
|
||||||
|
prefix_offset = max(
|
||||||
|
read_offset - INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET, 0)
|
||||||
|
return new_tokens, prefix_offset, read_offset
|
||||||
|
|
||||||
|
|
||||||
|
# Based on
|
||||||
|
# https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15
|
||||||
|
# under Apache 2.0 license
|
||||||
|
def detokenize_incrementally(
|
||||||
|
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
||||||
|
all_input_ids: List[int],
|
||||||
|
prev_tokens: Optional[List[str]],
|
||||||
|
prefix_offset: int,
|
||||||
|
read_offset: int,
|
||||||
|
skip_special_tokens: bool = False,
|
||||||
|
spaces_between_special_tokens: bool = True,
|
||||||
|
) -> Tuple[List[str], str, int, int]:
|
||||||
|
"""Detokenizes the input ids incrementally and returns the new tokens
|
||||||
|
and the new text.
|
||||||
|
|
||||||
|
If `prev_tokens` is None, this function will convert the input ids to
|
||||||
|
tokens and return the tokens and the new text. Otherwise, it will return the
|
||||||
|
new tokens and the new text.
|
||||||
|
|
||||||
|
This function will also return the new prefix offset and the new read
|
||||||
|
offset to be used in the next iteration.
|
||||||
|
|
||||||
|
The offsets are necessary to defeat cleanup algorithms in the decode which
|
||||||
|
decide to add a space or not depending on the surrounding ids.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tokenizer: The tokenizer to use.
|
||||||
|
all_input_ids: The input ids. The last id is the new token id.
|
||||||
|
prev_tokens: The previous tokens. If None, this function will convert
|
||||||
|
the input ids to tokens and return the tokens and the new text.
|
||||||
|
prefix_offset: The prefix offset.
|
||||||
|
read_offset: The read offset.
|
||||||
|
skip_special_tokens: Whether to skip special tokens.
|
||||||
|
spaces_between_special_tokens: Whether to add spaces between special
|
||||||
|
tokens.
|
||||||
|
"""
|
||||||
|
new_token_id = all_input_ids[-1]
|
||||||
|
# This is the first iteration for this sequence
|
||||||
|
is_first_iter = prev_tokens is None
|
||||||
|
if is_first_iter:
|
||||||
|
(prev_tokens, prefix_offset,
|
||||||
|
read_offset) = convert_prompt_ids_to_tokens(
|
||||||
|
tokenizer,
|
||||||
|
all_input_ids[:-1],
|
||||||
|
skip_special_tokens=skip_special_tokens)
|
||||||
|
|
||||||
|
# If the new token id is out of bounds, return an empty string.
|
||||||
|
if new_token_id >= len(tokenizer):
|
||||||
|
new_tokens = [""]
|
||||||
|
else:
|
||||||
|
# Put new_token_id in a list so skip_special_tokens is respected
|
||||||
|
new_tokens = tokenizer.convert_ids_to_tokens(
|
||||||
|
[new_token_id], skip_special_tokens=skip_special_tokens)
|
||||||
|
output_tokens = prev_tokens + new_tokens
|
||||||
|
|
||||||
|
# If this is the first iteration, return all tokens.
|
||||||
|
if is_first_iter:
|
||||||
|
new_tokens = output_tokens
|
||||||
|
|
||||||
|
# The prefix text is necessary only to defeat cleanup algorithms in
|
||||||
|
# the decode which decide to add a space or not depending on the
|
||||||
|
# surrounding ids.
|
||||||
|
if tokenizer.is_fast or not tokenizer.get_added_vocab():
|
||||||
|
prefix_text = tokenizer.convert_tokens_to_string(
|
||||||
|
output_tokens[prefix_offset:read_offset])
|
||||||
|
new_text = tokenizer.convert_tokens_to_string(
|
||||||
|
output_tokens[prefix_offset:])
|
||||||
|
else:
|
||||||
|
prefix_text = _convert_tokens_to_string_with_added_encoders(
|
||||||
|
tokenizer,
|
||||||
|
output_tokens[prefix_offset:read_offset],
|
||||||
|
skip_special_tokens=skip_special_tokens,
|
||||||
|
spaces_between_special_tokens=spaces_between_special_tokens,
|
||||||
|
)
|
||||||
|
new_text = _convert_tokens_to_string_with_added_encoders(
|
||||||
|
tokenizer,
|
||||||
|
output_tokens[prefix_offset:],
|
||||||
|
skip_special_tokens=skip_special_tokens,
|
||||||
|
spaces_between_special_tokens=spaces_between_special_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(new_text) <= len(prefix_text) or new_text.endswith("<EFBFBD>"):
|
||||||
|
# utf-8 char at the end means it's a potential unfinished byte sequence
|
||||||
|
# from byte fallback tokenization.
|
||||||
|
# If it's in the middle, it's probably a real invalid id generated
|
||||||
|
# by the model
|
||||||
|
return new_tokens, "", prefix_offset, read_offset
|
||||||
|
|
||||||
|
new_text = new_text[len(prefix_text):]
|
||||||
|
return new_tokens, new_text, read_offset, len(output_tokens)
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from typing import List, Optional, Tuple, Union
|
from typing import Optional, Union
|
||||||
|
|
||||||
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
from transformers import (AutoTokenizer, PreTrainedTokenizer,
|
||||||
PreTrainedTokenizerFast)
|
PreTrainedTokenizerFast)
|
||||||
@ -126,157 +126,3 @@ def get_lora_tokenizer(lora_request: LoRARequest, *args,
|
|||||||
|
|
||||||
|
|
||||||
get_lora_tokenizer_async = make_async(get_lora_tokenizer)
|
get_lora_tokenizer_async = make_async(get_lora_tokenizer)
|
||||||
|
|
||||||
|
|
||||||
def _convert_tokens_to_string_with_added_encoders(
|
|
||||||
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
|
||||||
output_tokens: List[str],
|
|
||||||
skip_special_tokens: bool,
|
|
||||||
spaces_between_special_tokens: bool,
|
|
||||||
) -> str:
|
|
||||||
# Adapted from
|
|
||||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
|
|
||||||
# NOTE(woosuk): The following code is slow because it runs a for loop over
|
|
||||||
# the output_tokens. In Python, running a for loop over a list can be slow
|
|
||||||
# even when the loop body is very simple.
|
|
||||||
sub_texts = []
|
|
||||||
current_sub_text = []
|
|
||||||
all_special_tokens = set(tokenizer.all_special_tokens)
|
|
||||||
for token in output_tokens:
|
|
||||||
if skip_special_tokens and token in all_special_tokens:
|
|
||||||
continue
|
|
||||||
if token in tokenizer.get_added_vocab():
|
|
||||||
if current_sub_text:
|
|
||||||
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
|
|
||||||
sub_texts.append(sub_text)
|
|
||||||
current_sub_text = []
|
|
||||||
sub_texts.append(token)
|
|
||||||
else:
|
|
||||||
current_sub_text.append(token)
|
|
||||||
if current_sub_text:
|
|
||||||
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
|
|
||||||
sub_texts.append(sub_text)
|
|
||||||
if spaces_between_special_tokens:
|
|
||||||
return " ".join(sub_texts)
|
|
||||||
else:
|
|
||||||
return "".join(sub_texts)
|
|
||||||
|
|
||||||
|
|
||||||
# 5 is an arbitrary value that should work for all
|
|
||||||
# tokenizers (bigger = more conservative).
|
|
||||||
INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET = 5
|
|
||||||
|
|
||||||
|
|
||||||
def convert_prompt_ids_to_tokens(
|
|
||||||
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
|
||||||
prompt_ids: List[int],
|
|
||||||
skip_special_tokens: bool = False,
|
|
||||||
) -> Tuple[List[str], int, int]:
|
|
||||||
"""Converts the prompt ids to tokens and returns the tokens and offsets
|
|
||||||
for incremental detokenization.
|
|
||||||
|
|
||||||
Note that not all tokens are converted to strings. Only the tokens that
|
|
||||||
are necessary for incremental detokenization are converted to strings.
|
|
||||||
"""
|
|
||||||
# Offset a little more in case we have special tokens.
|
|
||||||
prefix_offset = max(
|
|
||||||
len(prompt_ids) - INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET - 2, 0)
|
|
||||||
# We do not need to convert the whole prompt to tokens.
|
|
||||||
new_tokens = tokenizer.convert_ids_to_tokens(
|
|
||||||
prompt_ids[prefix_offset:], skip_special_tokens=skip_special_tokens)
|
|
||||||
prefix_offset = max(
|
|
||||||
len(new_tokens) - INITIAL_INCREMENTAL_DETOKENIZATION_OFFSET, 0)
|
|
||||||
read_offset = len(new_tokens)
|
|
||||||
return new_tokens, prefix_offset, read_offset
|
|
||||||
|
|
||||||
|
|
||||||
# Based on
|
|
||||||
# https://github.com/huggingface/text-generation-inference/blob/v0.9.4/server/text_generation_server/models/model.py#L62C9-L62C15
|
|
||||||
# under Apache 2.0 license
|
|
||||||
def detokenize_incrementally(
|
|
||||||
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
|
||||||
all_input_ids: List[int],
|
|
||||||
prev_tokens: Optional[List[str]],
|
|
||||||
prefix_offset: int,
|
|
||||||
read_offset: int,
|
|
||||||
skip_special_tokens: bool = False,
|
|
||||||
spaces_between_special_tokens: bool = True,
|
|
||||||
) -> Tuple[List[str], str, int, int]:
|
|
||||||
"""Detokenizes the input ids incrementally and returns the new tokens
|
|
||||||
and the new text.
|
|
||||||
|
|
||||||
If `prev_tokens` is None, this function will convert the input ids to
|
|
||||||
tokens and return the tokens and the new text. Otherwise, it will return the
|
|
||||||
new tokens and the new text.
|
|
||||||
|
|
||||||
This function will also return the new prefix offset and the new read
|
|
||||||
offset to be used in the next iteration.
|
|
||||||
|
|
||||||
The offsets are necessary to defeat cleanup algorithms in the decode which
|
|
||||||
decide to add a space or not depending on the surrounding ids.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
tokenizer: The tokenizer to use.
|
|
||||||
all_input_ids: The input ids. The last id is the new token id.
|
|
||||||
prev_tokens: The previous tokens. If None, this function will convert
|
|
||||||
the input ids to tokens and return the tokens and the new text.
|
|
||||||
prefix_offset: The prefix offset.
|
|
||||||
read_offset: The read offset.
|
|
||||||
skip_special_tokens: Whether to skip special tokens.
|
|
||||||
spaces_between_special_tokens: Whether to add spaces between special
|
|
||||||
tokens.
|
|
||||||
"""
|
|
||||||
new_token_id = all_input_ids[-1]
|
|
||||||
# This is the first iteration for this sequence
|
|
||||||
is_first_iter = prev_tokens is None
|
|
||||||
if is_first_iter:
|
|
||||||
(prev_tokens, prefix_offset,
|
|
||||||
read_offset) = convert_prompt_ids_to_tokens(
|
|
||||||
tokenizer,
|
|
||||||
all_input_ids[:-1],
|
|
||||||
skip_special_tokens=skip_special_tokens)
|
|
||||||
|
|
||||||
# If the new token id is out of bounds, return an empty string.
|
|
||||||
if new_token_id >= len(tokenizer):
|
|
||||||
new_tokens = [""]
|
|
||||||
else:
|
|
||||||
# Put new_token_id in a list so skip_special_tokens is respected
|
|
||||||
new_tokens = tokenizer.convert_ids_to_tokens(
|
|
||||||
[new_token_id], skip_special_tokens=skip_special_tokens)
|
|
||||||
output_tokens = prev_tokens + new_tokens
|
|
||||||
|
|
||||||
# If this is the first iteration, return all tokens.
|
|
||||||
if is_first_iter:
|
|
||||||
new_tokens = output_tokens
|
|
||||||
|
|
||||||
# The prefix text is necessary only to defeat cleanup algorithms in
|
|
||||||
# the decode which decide to add a space or not depending on the
|
|
||||||
# surrounding ids.
|
|
||||||
if tokenizer.is_fast or not tokenizer.get_added_vocab():
|
|
||||||
prefix_text = tokenizer.convert_tokens_to_string(
|
|
||||||
output_tokens[prefix_offset:read_offset])
|
|
||||||
new_text = tokenizer.convert_tokens_to_string(
|
|
||||||
output_tokens[prefix_offset:])
|
|
||||||
else:
|
|
||||||
prefix_text = _convert_tokens_to_string_with_added_encoders(
|
|
||||||
tokenizer,
|
|
||||||
output_tokens[prefix_offset:read_offset],
|
|
||||||
skip_special_tokens=skip_special_tokens,
|
|
||||||
spaces_between_special_tokens=spaces_between_special_tokens,
|
|
||||||
)
|
|
||||||
new_text = _convert_tokens_to_string_with_added_encoders(
|
|
||||||
tokenizer,
|
|
||||||
output_tokens[prefix_offset:],
|
|
||||||
skip_special_tokens=skip_special_tokens,
|
|
||||||
spaces_between_special_tokens=spaces_between_special_tokens,
|
|
||||||
)
|
|
||||||
|
|
||||||
if len(new_text) > len(prefix_text) and not new_text.endswith("<EFBFBD>"):
|
|
||||||
# utf-8 char at the end means it's a potential unfinished byte sequence
|
|
||||||
# from byte fallback tokenization.
|
|
||||||
# If it's in the middle, it's probably a real invalid id generated
|
|
||||||
# by the model
|
|
||||||
new_text = new_text[len(prefix_text):]
|
|
||||||
return new_tokens, new_text, read_offset, len(output_tokens)
|
|
||||||
else:
|
|
||||||
return new_tokens, "", prefix_offset, read_offset
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user