[FEAT] [ROCm] Add AITER int8 scaled gemm kernel (#15433)
Signed-off-by: tjtanaa <tunjian.tan@embeddedllm.com>
This commit is contained in:
parent
73aa7041bf
commit
4965ec42d2
@ -20,6 +20,23 @@ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
sparse_cutlass_supported)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
# AITER only supports per-channel-per-channel INT8 gemm
|
||||
# and per-tensor-per-tensor INT8 GEMM.
|
||||
# It does not support mix precision MM and mix quantization scheme.
|
||||
ROCM_AITER_SUPPORTED_INT8_MODEL = [
|
||||
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
|
||||
"nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2"
|
||||
]
|
||||
|
||||
# TritonScaledMMLinearKernel only supports symmetric quantization.
|
||||
ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL = [
|
||||
"nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change",
|
||||
"nm-testing/tinyllama-oneshot-w8-channel-a8-tensor",
|
||||
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
|
||||
"nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2",
|
||||
"nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2",
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def use_v0_only(monkeypatch):
|
||||
@ -57,6 +74,11 @@ def use_v0_only(monkeypatch):
|
||||
)
|
||||
def test_compressed_tensors_w8a8_static_setup(vllm_runner, model_args):
|
||||
model_path, strategy, quant_type, shape_0, is_symmetric = model_args
|
||||
|
||||
if current_platform.is_rocm(
|
||||
) and model_path not in ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL:
|
||||
pytest.skip(f"Skip model {model_path} as it is not support on ROCm.")
|
||||
|
||||
with vllm_runner(model_path, enforce_eager=True) as llm:
|
||||
|
||||
def check_model(model):
|
||||
@ -123,6 +145,8 @@ def test_compressed_tensors_w8a8_static_setup(vllm_runner, model_args):
|
||||
)
|
||||
@pytest.mark.parametrize("max_tokens", [32])
|
||||
@pytest.mark.parametrize("num_logprobs", [10])
|
||||
@pytest.mark.parametrize(
|
||||
"use_aiter", [True, False] if current_platform.is_rocm() else [False])
|
||||
def test_compressed_tensors_w8a8_logprobs(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
@ -130,7 +154,21 @@ def test_compressed_tensors_w8a8_logprobs(
|
||||
model_path,
|
||||
max_tokens,
|
||||
num_logprobs,
|
||||
use_aiter,
|
||||
monkeypatch,
|
||||
):
|
||||
|
||||
if current_platform.is_rocm(
|
||||
) and model_path not in ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL:
|
||||
pytest.skip(f"Skip model {model_path} as it is not support on ROCm.")
|
||||
|
||||
if use_aiter:
|
||||
if model_path not in ROCM_AITER_SUPPORTED_INT8_MODEL:
|
||||
pytest.skip(
|
||||
f"Skip model {model_path} as it is not support by aiter.")
|
||||
# this will enable VLLM_ROCM_USE_AITER_LINEAR
|
||||
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
|
||||
|
||||
dtype = "bfloat16"
|
||||
|
||||
# skip language translation prompt for the static per tensor asym model
|
||||
@ -154,6 +192,9 @@ def test_compressed_tensors_w8a8_logprobs(
|
||||
name_1="vllm",
|
||||
)
|
||||
|
||||
if current_platform.is_rocm():
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
def test_compressed_tensors_no_enforce_eager(vllm_runner):
|
||||
model_path = "nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change"
|
||||
@ -177,8 +218,27 @@ def test_compressed_tensors_no_enforce_eager(vllm_runner):
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_compressed_tensors_w8a8_dynamic_per_token(vllm_runner, model_args):
|
||||
@pytest.mark.parametrize(
|
||||
"use_aiter", [True, False] if current_platform.is_rocm() else [False])
|
||||
def test_compressed_tensors_w8a8_dynamic_per_token(
|
||||
vllm_runner,
|
||||
model_args,
|
||||
use_aiter,
|
||||
monkeypatch,
|
||||
):
|
||||
model_path, strategy = model_args
|
||||
|
||||
if current_platform.is_rocm(
|
||||
) and model_path not in ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL:
|
||||
pytest.skip(f"Skip model {model_path} as it is not support on ROCm.")
|
||||
|
||||
if use_aiter:
|
||||
if model_path not in ROCM_AITER_SUPPORTED_INT8_MODEL:
|
||||
pytest.skip(
|
||||
f"Skip model {model_path} as it is not support by aiter.")
|
||||
# this will enable VLLM_ROCM_USE_AITER_LINEAR
|
||||
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
|
||||
|
||||
with vllm_runner(model_path, dtype=torch.float16) as llm:
|
||||
|
||||
def check_model(model):
|
||||
@ -207,6 +267,8 @@ def test_compressed_tensors_w8a8_dynamic_per_token(vllm_runner, model_args):
|
||||
("nm-testing/tinyllama-oneshot-w8a16-per-channel", "channel", None, 4),
|
||||
],
|
||||
)
|
||||
@pytest.mark.skipif(not current_platform.is_cuda(),
|
||||
reason="The tests are skipped on non-CUDA platform.")
|
||||
def test_compressed_tensors_wNa16(vllm_runner, wNa16_args):
|
||||
model, strategy, group, pack_factor = wNa16_args
|
||||
with vllm_runner(model) as llm:
|
||||
@ -231,6 +293,8 @@ def test_compressed_tensors_wNa16(vllm_runner, wNa16_args):
|
||||
assert output
|
||||
|
||||
|
||||
@pytest.mark.skipif(not current_platform.is_cuda(),
|
||||
reason="This test is skipped on non-CUDA platform.")
|
||||
def test_compressed_tensors_w4a16_marlin24(vllm_runner):
|
||||
model_path = "nm-testing/llama7b-one-shot-2_4-w4a16-marlin24-t"
|
||||
with vllm_runner(model_path) as llm:
|
||||
@ -271,7 +335,7 @@ def test_compressed_tensors_fp8(vllm_runner):
|
||||
|
||||
if isinstance(qkv_proj.scheme, CompressedTensorsW8A8Fp8):
|
||||
assert len(qkv_proj.input_scale.shape) == 0
|
||||
assert qkv_proj.weight.dtype is torch.float8_e4m3fn
|
||||
assert qkv_proj.weight.dtype is current_platform.fp8_dtype()
|
||||
assert qkv_proj.weight_scale.dtype is torch.float32
|
||||
assert len(qkv_proj.weight_scale.shape) == 0
|
||||
|
||||
@ -281,6 +345,8 @@ def test_compressed_tensors_fp8(vllm_runner):
|
||||
assert output
|
||||
|
||||
|
||||
@pytest.mark.skipif(not current_platform.is_cuda(),
|
||||
reason="This test is skipped on non-CUDA platform.")
|
||||
def test_compressed_tensors_kv_cache(vllm_runner):
|
||||
model_path = "nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme"
|
||||
with vllm_runner(model_path, kv_cache_dtype="fp8") as llm:
|
||||
@ -309,7 +375,8 @@ def _test_2of4_quant_models(qkv_proj,
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not current_platform.has_device_capability(90),
|
||||
not current_platform.is_cuda()
|
||||
or not current_platform.has_device_capability(90),
|
||||
reason="Sparse FP8 is not yet supported on this GPU type.",
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
@ -356,7 +423,8 @@ def test_compressed_tensors_2of4_quant_fp8(vllm_runner, args_2of4):
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not current_platform.has_device_capability(90),
|
||||
not current_platform.is_cuda()
|
||||
or not current_platform.has_device_capability(90),
|
||||
reason="Sparse FP8 is not yet supported on this GPU type.",
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -75,6 +75,7 @@ if TYPE_CHECKING:
|
||||
VLLM_DISABLED_KERNELS: list[str] = []
|
||||
VLLM_USE_V1: bool = True
|
||||
VLLM_ROCM_USE_AITER: bool = False
|
||||
VLLM_ROCM_USE_AITER_LINEAR: bool = True
|
||||
VLLM_ROCM_USE_AITER_MOE: bool = True
|
||||
VLLM_ROCM_USE_AITER_FP8_BLOCK_SCALED_MOE: bool = False
|
||||
VLLM_ROCM_USE_AITER_RMSNORM: bool = True
|
||||
@ -524,6 +525,13 @@ environment_variables: dict[str, Callable[[], Any]] = {
|
||||
lambda: (os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in
|
||||
("true", "1")),
|
||||
|
||||
# use aiter linear op if aiter ops are enabled
|
||||
# The following list of related ops
|
||||
# - scaled_mm (per-tensor / rowwise)
|
||||
"VLLM_ROCM_USE_AITER_LINEAR":
|
||||
lambda: (os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in
|
||||
("true", "1")),
|
||||
|
||||
# Whether to use aiter moe ops.
|
||||
# By default is enabled.
|
||||
"VLLM_ROCM_USE_AITER_MOE":
|
||||
|
@ -3,6 +3,8 @@
|
||||
import os
|
||||
from typing import Dict, List, Optional, Type
|
||||
|
||||
from vllm.model_executor.layers.quantization.kernels.scaled_mm.aiter import (
|
||||
AiterScaledMMLinearKernel)
|
||||
from vllm.model_executor.layers.quantization.kernels.scaled_mm.cutlass import (
|
||||
CutlassScaledMMLinearKernel)
|
||||
from vllm.model_executor.layers.quantization.kernels.scaled_mm.ScaledMMLinearKernel import ( # noqa: E501
|
||||
@ -17,7 +19,7 @@ from vllm.platforms import PlatformEnum, current_platform
|
||||
_POSSIBLE_KERNELS: Dict[PlatformEnum, List[Type[ScaledMMLinearKernel]]] = {
|
||||
PlatformEnum.CPU: [CutlassScaledMMLinearKernel],
|
||||
PlatformEnum.CUDA: [CutlassScaledMMLinearKernel],
|
||||
PlatformEnum.ROCM: [TritonScaledMMLinearKernel],
|
||||
PlatformEnum.ROCM: [AiterScaledMMLinearKernel, TritonScaledMMLinearKernel],
|
||||
PlatformEnum.TPU: [XLAScaledMMLinearKernel],
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,119 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .cutlass import CutlassScaledMMLinearKernel
|
||||
from .ScaledMMLinearKernel import ScaledMMLinearLayerConfig
|
||||
|
||||
|
||||
class AiterScaledMMLinearKernel(CutlassScaledMMLinearKernel):
|
||||
|
||||
@classmethod
|
||||
def get_min_capability(cls) -> int:
|
||||
return 90
|
||||
|
||||
@classmethod
|
||||
def can_implement(
|
||||
cls, c: ScaledMMLinearLayerConfig) -> Tuple[bool, Optional[str]]:
|
||||
if not current_platform.is_rocm():
|
||||
return (
|
||||
False,
|
||||
"AiterScaledMMLinearKernel requires `aiter` which is not " +
|
||||
"currently supported on non-ROCm platform.")
|
||||
|
||||
try:
|
||||
import aiter # noqa: F401 # deliberately attempt to import aiter
|
||||
except Exception:
|
||||
return (
|
||||
False,
|
||||
"AiterScaledMMLinearKernel requires `aiter` which is not " +
|
||||
"installed on ROCm.")
|
||||
# Check if rocm_aiter_gemm_w8a8_scaled_mm is enabled
|
||||
if not (
|
||||
envs.VLLM_ROCM_USE_AITER_LINEAR \
|
||||
and envs.VLLM_ROCM_USE_AITER
|
||||
):
|
||||
return (False, "AiterScaledMMLinearKernel is disabled. " +
|
||||
"Enable by setting `VLLM_ROCM_USE_AITER=1` " +
|
||||
"and `VLLM_ROCM_USE_AITER_LINEAR=1`. " +
|
||||
"`VLLM_ROCM_USE_AITER_LINEAR` default is True.")
|
||||
|
||||
if not c.input_symmetric:
|
||||
return (False,
|
||||
"AiterScaledMMLinearKernel only supports symmetric " +
|
||||
"quantization.")
|
||||
return True, None
|
||||
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
||||
super().process_weights_after_loading(layer)
|
||||
|
||||
def apply_weights(self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
"""
|
||||
`AiterScaledMMLinearKernel` implements a fused version of
|
||||
`output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
|
||||
where scale_a * a and scale_b * b are implemented using numpy-style
|
||||
broadcasting.
|
||||
Currently only support per-tensor-per-tensor GEMM
|
||||
and per-token-per-channel GEMM through AITER
|
||||
w8a8 scaled gemm. `AiterScaledMMLinearKernel` also does not support
|
||||
ATIER block scaled GEMM and mix-precision GEMM.
|
||||
"""
|
||||
w_q, w_s, i_s, i_zp, azp_adj = self._get_weight_params(layer)
|
||||
|
||||
# ops.scaled_int8_quant supports both dynamic and static quant:
|
||||
# * dynamic, i_s is None and x_s computed from x.
|
||||
# * static, i_s is scalar and x_s is i_s.
|
||||
symmetric = azp_adj is None
|
||||
assert symmetric, ("AiterScaledMMLinearKernel only supports"
|
||||
" symmetric quantization.")
|
||||
x_q, x_s, x_zp = ops.scaled_int8_quant(x,
|
||||
i_s,
|
||||
i_zp,
|
||||
symmetric=symmetric)
|
||||
|
||||
assert x_zp is None, ("AiterScaledMMLinearKernel only supports"
|
||||
" symmetric quantization.")
|
||||
out_dtype = x.dtype
|
||||
|
||||
assert (w_q.shape[0] % 16 == 0 and w_q.shape[1] % 16 == 0)
|
||||
assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
|
||||
assert bias is None or bias.shape[0] == w_q.shape[
|
||||
1] and bias.dtype == out_dtype
|
||||
|
||||
m = x_q.shape[0] # a
|
||||
n = w_q.shape[1] # b
|
||||
|
||||
per_tensor_scale_a = (x_s.numel() == 1)
|
||||
per_tensor_scale_b = (w_s.numel() == 1)
|
||||
per_token_scale_a = (x_s.numel() == m)
|
||||
per_channel_scale_b = (w_s.numel() == n)
|
||||
|
||||
# @TODO:
|
||||
# Maybe broadcast the per-tensor-scale into per-channel-scale
|
||||
# if one of the scale is a per-channel-scale.
|
||||
# For now, it only supports:
|
||||
# - per-tensor-per-tensor a8w8 scaled GEMM, and
|
||||
# - per-token-per-channel a8w8 scaled GEMM
|
||||
assert ((per_tensor_scale_a and per_tensor_scale_b)
|
||||
or (per_token_scale_a and per_channel_scale_b)), (
|
||||
"Currently only support per-tensor-per-tensor GEMM " +
|
||||
" and per-token-per-channel GEMM through AITER"
|
||||
" w8a8 scaled gemm. `AiterScaledMMLinearKernel` " +
|
||||
"does not support AITER block scaled GEMM.")
|
||||
|
||||
from aiter import gemm_a8w8_CK
|
||||
|
||||
# gemm_a8w8_CK(a, b, scale_a, scale_b, bias) expects
|
||||
# a to be [M, K]
|
||||
# b to be [N, K]
|
||||
# CutlassScaledMMLinearKernel prepare weight `w_q` in [K, N] format
|
||||
return gemm_a8w8_CK(x_q, w_q.t(), x_s, w_s, bias).to(out_dtype)
|
Loading…
x
Reference in New Issue
Block a user