[BugFix] Stop silent failures on compressed-tensors parsing (#9381)

This commit is contained in:
Dipika Sikka 2024-10-17 21:54:00 -04:00 committed by GitHub
parent 343f8e0905
commit 48138a8415
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 23 additions and 13 deletions

View File

@ -31,4 +31,4 @@ pyyaml
six>=1.16.0; python_version > '3.11' # transitive dependency of pandas that needs to be the latest version for python 3.12
setuptools>=74.1.1; python_version > '3.11' # Setuptools is used by triton, we need to ensure a modern version is installed for 3.12+ so that it does not try to import distutils, which was removed in 3.12
einops # Required for Qwen2-VL.
compressed-tensors == 0.6.0 # required for compressed-tensors
compressed-tensors == 0.7.1 # required for compressed-tensors

View File

@ -100,12 +100,21 @@ class CompressedTensorsConfig(QuantizationConfig):
target_scheme_map[target][
"weights"] = QuantizationArgs.parse_obj(
quant_config.get("weights"))
try:
target_scheme_map[target][
"input_activations"] = QuantizationArgs.parse_obj(
quant_config.get("input_activations"))
except Exception:
target_scheme_map[target]["input_activations"] = None
target_scheme_map[target]["input_activations"] = None
if is_activation_quantization_format(quant_format):
input_activations = quant_config.get("input_activations")
# The only case where we have activation quant supported
# but no input_activations provided in the config
# should be w8a16fp8 w8a16fp8 can also run for cases where
# there is an input_quant but it is ignored
if not input_activations:
assert target_scheme_map[target][
"weights"].type == QuantizationType.FLOAT
else:
target_scheme_map[target][
"input_activations"] = QuantizationArgs.parse_obj(
quant_config.get("input_activations"))
return cls(target_scheme_map=target_scheme_map,
ignore=ignore,
@ -244,8 +253,6 @@ class CompressedTensorsConfig(QuantizationConfig):
group_size=weight_quant.group_size,
actorder=weight_quant.actorder)
# Detect If Activation Quantization.
# TODO @dsikka: clean-up conditions
if is_activation_quantization_format(self.quant_format):
if self._is_fp8_w8a8(weight_quant, input_quant):
is_fp8_w8a8_supported = self._check_scheme_supported(
@ -256,16 +263,19 @@ class CompressedTensorsConfig(QuantizationConfig):
is_static_input_scheme=(input_quant
and not input_quant.dynamic))
else:
# note: input_quant will be present for converted models;
# will be ignored during inference post loading
return CompressedTensorsW8A16Fp8(
strategy=weight_quant.strategy,
is_static_input_scheme=(input_quant
and not input_quant.dynamic))
is_static_input_scheme=not input_quant.dynamic)
# note: input_quant can be None
if self._is_fp8_w8a16(weight_quant, input_quant):
is_static_input_scheme = (input_quant
and not input_quant.dynamic)
return CompressedTensorsW8A16Fp8(
strategy=weight_quant.strategy,
is_static_input_scheme=(input_quant
and not input_quant.dynamic))
is_static_input_scheme=is_static_input_scheme)
if self._is_static_tensor_w8a8(weight_quant, input_quant):
return CompressedTensorsW8A8Int8(