[Doc] Update examples to remove SparseAutoModelForCausalLM (#12062)
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
This commit is contained in:
parent
ad34c0df0f
commit
3f9b7ab9f5
@ -54,16 +54,15 @@ The quantization process involves three main steps:
|
|||||||
|
|
||||||
### 1. Loading the Model
|
### 1. Loading the Model
|
||||||
|
|
||||||
Use `SparseAutoModelForCausalLM`, which wraps `AutoModelForCausalLM`, for saving and loading quantized models:
|
Load your model and tokenizer using the standard `transformers` AutoModel classes:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from llmcompressor.transformers import SparseAutoModelForCausalLM
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
|
||||||
|
|
||||||
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
|
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
model = SparseAutoModelForCausalLM.from_pretrained(
|
MODEL_ID, device_map="auto", torch_dtype="auto",
|
||||||
MODEL_ID, device_map="auto", torch_dtype="auto")
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -30,14 +30,13 @@ The quantization process involves four main steps:
|
|||||||
|
|
||||||
### 1. Loading the Model
|
### 1. Loading the Model
|
||||||
|
|
||||||
Use `SparseAutoModelForCausalLM`, which wraps `AutoModelForCausalLM`, for saving and loading quantized models:
|
Load your model and tokenizer using the standard `transformers` AutoModel classes:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from llmcompressor.transformers import SparseAutoModelForCausalLM
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
|
||||||
|
|
||||||
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
|
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||||
model = SparseAutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
MODEL_ID, device_map="auto", torch_dtype="auto",
|
MODEL_ID, device_map="auto", torch_dtype="auto",
|
||||||
)
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user