[Misc] Update transformers version limits of multi-modal tests (#16381)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
a9bd832fc5
commit
3d4c87758e
@ -429,7 +429,7 @@ steps:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/multimodal
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'core_model or quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language -m 'core_model or quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/audio_language -m core_model
|
||||
- pytest -v -s models/encoder_decoder/language -m core_model
|
||||
@ -448,10 +448,7 @@ steps:
|
||||
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
|
||||
- pytest -v -s models/decoder_only/audio_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/decoder_only/vision_language/test_models.py -m 'split(group=0) and not core_model and not quant_model'
|
||||
# HACK - run phi3v tests separately to sidestep this transformers bug
|
||||
# https://github.com/huggingface/transformers/issues/34307
|
||||
- pytest -v -s models/decoder_only/vision_language/test_phi3v.py
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py --ignore models/decoder_only/vision_language/test_phi3v.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s --ignore models/decoder_only/vision_language/test_models.py models/decoder_only/vision_language -m 'not core_model and not quant_model'
|
||||
- pytest -v -s models/embedding/vision_language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/language -m 'not core_model'
|
||||
- pytest -v -s models/encoder_decoder/vision_language -m 'not core_model'
|
||||
|
@ -425,23 +425,20 @@ VLM_TEST_SETTINGS = {
|
||||
max_num_seqs=2,
|
||||
patch_hf_runner=model_utils.molmo_patch_hf_runner,
|
||||
),
|
||||
# Tests for phi3v currently live in another file because of a bug in
|
||||
# transformers. Once this issue is fixed, we can enable them here instead.
|
||||
# https://github.com/huggingface/transformers/issues/34307
|
||||
# "phi3v": VLMTestInfo(
|
||||
# models=["microsoft/Phi-3.5-vision-instruct"],
|
||||
# test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||||
# prompt_formatter=lambda img_prompt: f"<|user|>\n{img_prompt}<|end|>\n<|assistant|>\n", # noqa: E501
|
||||
# img_idx_to_prompt=lambda idx: f"<|image_{idx}|>\n",
|
||||
# max_model_len=4096,
|
||||
# max_num_seqs=2,
|
||||
# task="generate",
|
||||
# # use eager mode for hf runner since phi3v didn't work with flash_attn
|
||||
# hf_model_kwargs={"_attn_implementation": "eager"},
|
||||
# use_tokenizer_eos=True,
|
||||
# vllm_output_post_proc=model_utils.phi3v_vllm_to_hf_output,
|
||||
# num_logprobs=10,
|
||||
# ),
|
||||
"phi3v": VLMTestInfo(
|
||||
models=["microsoft/Phi-3.5-vision-instruct"],
|
||||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||||
prompt_formatter=lambda img_prompt: f"<|user|>\n{img_prompt}<|end|>\n<|assistant|>\n", # noqa: E501
|
||||
img_idx_to_prompt=lambda idx: f"<|image_{idx}|>\n",
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
task="generate",
|
||||
# use eager mode for hf runner since phi3v didn't work with flash_attn
|
||||
hf_model_kwargs={"_attn_implementation": "eager"},
|
||||
use_tokenizer_eos=True,
|
||||
vllm_output_post_proc=model_utils.phi3v_vllm_to_hf_output,
|
||||
num_logprobs=10,
|
||||
),
|
||||
"pixtral_hf": VLMTestInfo(
|
||||
models=["nm-testing/pixtral-12b-FP8-dynamic"],
|
||||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||||
|
@ -1,245 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import re
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
from packaging.version import Version
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import __version__ as TRANSFORMERS_VERSION
|
||||
|
||||
from vllm.multimodal.image import rescale_image_size
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sequence import SampleLogprobs
|
||||
|
||||
from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner
|
||||
from ...utils import check_logprobs_close
|
||||
|
||||
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
||||
"stop_sign":
|
||||
"<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501
|
||||
"cherry_blossom":
|
||||
"<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n",
|
||||
})
|
||||
HF_MULTIIMAGE_IMAGE_PROMPT = "<|user|>\n<|image_1|>\n<|image_2|>\nDescribe these images.<|end|>\n<|assistant|>\n" # noqa: E501
|
||||
|
||||
models = ["microsoft/Phi-3.5-vision-instruct"]
|
||||
|
||||
|
||||
def vllm_to_hf_output(vllm_output: tuple[list[int], str,
|
||||
Optional[SampleLogprobs]],
|
||||
model: str):
|
||||
"""Sanitize vllm output to be comparable with hf output."""
|
||||
_, output_str, out_logprobs = vllm_output
|
||||
|
||||
output_str_without_image = re.sub(r"(<\|image_\d+\|>)+", "", output_str)
|
||||
assert output_str_without_image[0] == " "
|
||||
output_str_without_image = output_str_without_image[1:]
|
||||
|
||||
hf_output_str = output_str_without_image + "<|end|><|endoftext|>"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model)
|
||||
hf_output_ids = tokenizer.encode(output_str_without_image)
|
||||
assert hf_output_ids[0] == 1
|
||||
hf_output_ids = hf_output_ids[1:]
|
||||
|
||||
return hf_output_ids, hf_output_str, out_logprobs
|
||||
|
||||
|
||||
target_dtype = "half"
|
||||
|
||||
# ROCm Triton FA can run into shared memory issues with these models,
|
||||
# use other backends in the meantime
|
||||
# FIXME (mattwong, gshtrasb, hongxiayan)
|
||||
if current_platform.is_rocm():
|
||||
os.environ["VLLM_USE_TRITON_FLASH_ATTN"] = "0"
|
||||
|
||||
|
||||
def run_test(
|
||||
hf_runner: type[HfRunner],
|
||||
vllm_runner: type[VllmRunner],
|
||||
inputs: list[tuple[list[str], PromptImageInput]],
|
||||
model: str,
|
||||
*,
|
||||
dtype: str,
|
||||
max_tokens: int,
|
||||
num_logprobs: int,
|
||||
mm_limit: int,
|
||||
tensor_parallel_size: int,
|
||||
distributed_executor_backend: Optional[str] = None,
|
||||
):
|
||||
"""Inference result should be the same between hf and vllm.
|
||||
|
||||
All the image fixtures for the test are from IMAGE_ASSETS.
|
||||
For huggingface runner, we provide the PIL images as input.
|
||||
For vllm runner, we provide MultiModalDataDict objects
|
||||
and corresponding MultiModalConfig as input.
|
||||
Note, the text input is also adjusted to abide by vllm contract.
|
||||
The text output is sanitized to be able to compare with hf.
|
||||
"""
|
||||
# HACK - this is an attempted workaround for the following bug
|
||||
# https://github.com/huggingface/transformers/issues/34307
|
||||
from transformers import AutoImageProcessor # noqa: F401
|
||||
from transformers import AutoProcessor # noqa: F401
|
||||
|
||||
# Once the model repo is updated to 4.49, we should be able to run the
|
||||
# test in `test_models.py` without the above workaround
|
||||
if Version(TRANSFORMERS_VERSION) >= Version("4.49"):
|
||||
pytest.skip(f"`transformers=={TRANSFORMERS_VERSION}` installed, "
|
||||
"but `transformers<=4.49` is required to run this model. "
|
||||
"Reason: Cannot run HF implementation")
|
||||
|
||||
# NOTE: take care of the order. run vLLM first, and then run HF.
|
||||
# vLLM needs a fresh new process without cuda initialization.
|
||||
# if we run HF first, the cuda initialization will be done and it
|
||||
# will hurt multiprocessing backend with fork method (the default method).
|
||||
# max_model_len should be greater than image_feature_size
|
||||
with vllm_runner(model,
|
||||
task="generate",
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
dtype=dtype,
|
||||
limit_mm_per_prompt={"image": mm_limit},
|
||||
tensor_parallel_size=tensor_parallel_size,
|
||||
distributed_executor_backend=distributed_executor_backend,
|
||||
enforce_eager=True) as vllm_model:
|
||||
vllm_outputs_per_case = [
|
||||
vllm_model.generate_greedy_logprobs(prompts,
|
||||
max_tokens,
|
||||
num_logprobs=num_logprobs,
|
||||
images=images)
|
||||
for prompts, images in inputs
|
||||
]
|
||||
|
||||
# use eager mode for hf runner, since phi3_v didn't work with flash_attn
|
||||
hf_model_kwargs = {"_attn_implementation": "eager"}
|
||||
with hf_runner(model, dtype=dtype,
|
||||
model_kwargs=hf_model_kwargs) as hf_model:
|
||||
eos_token_id = hf_model.processor.tokenizer.eos_token_id
|
||||
hf_outputs_per_case = [
|
||||
hf_model.generate_greedy_logprobs_limit(prompts,
|
||||
max_tokens,
|
||||
num_logprobs=num_logprobs,
|
||||
images=images,
|
||||
eos_token_id=eos_token_id)
|
||||
for prompts, images in inputs
|
||||
]
|
||||
|
||||
for hf_outputs, vllm_outputs in zip(hf_outputs_per_case,
|
||||
vllm_outputs_per_case):
|
||||
check_logprobs_close(
|
||||
outputs_0_lst=hf_outputs,
|
||||
outputs_1_lst=[
|
||||
vllm_to_hf_output(vllm_output, model)
|
||||
for vllm_output in vllm_outputs
|
||||
],
|
||||
name_0="hf",
|
||||
name_1="vllm",
|
||||
)
|
||||
|
||||
|
||||
# Since we use _attn_implementation="eager" for hf_runner, there is more
|
||||
# significant numerical difference. The basic `logprobs=5` fails to pass.
|
||||
@pytest.mark.parametrize("model", models)
|
||||
@pytest.mark.parametrize(
|
||||
"size_factors",
|
||||
[
|
||||
# No image
|
||||
[],
|
||||
# Single-scale
|
||||
[1.0],
|
||||
# Single-scale, batched
|
||||
[1.0, 1.0, 1.0],
|
||||
# Multi-scale
|
||||
[0.25, 0.5, 1.0],
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("dtype", [target_dtype])
|
||||
@pytest.mark.parametrize("max_tokens", [128])
|
||||
@pytest.mark.parametrize("num_logprobs", [10])
|
||||
def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
|
||||
dtype: str, max_tokens: int, num_logprobs: int) -> None:
|
||||
images = [asset.pil_image for asset in image_assets]
|
||||
|
||||
inputs_per_image = [(
|
||||
[prompt for _ in size_factors],
|
||||
[rescale_image_size(image, factor) for factor in size_factors],
|
||||
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
||||
|
||||
run_test(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
inputs_per_image,
|
||||
model,
|
||||
dtype=dtype,
|
||||
max_tokens=max_tokens,
|
||||
num_logprobs=num_logprobs,
|
||||
mm_limit=1,
|
||||
tensor_parallel_size=1,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", models)
|
||||
@pytest.mark.parametrize("dtype", [target_dtype])
|
||||
def test_regression_7840(hf_runner, vllm_runner, image_assets, model,
|
||||
dtype) -> None:
|
||||
images = [asset.pil_image for asset in image_assets]
|
||||
|
||||
inputs_regresion_7840 = [
|
||||
([prompt], [image]) for image, prompt in zip(images, HF_IMAGE_PROMPTS)
|
||||
]
|
||||
|
||||
# Regression test for #7840.
|
||||
run_test(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
inputs_regresion_7840,
|
||||
model,
|
||||
dtype=dtype,
|
||||
max_tokens=128,
|
||||
num_logprobs=10,
|
||||
mm_limit=1,
|
||||
tensor_parallel_size=1,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", models)
|
||||
@pytest.mark.parametrize(
|
||||
"size_factors",
|
||||
[
|
||||
# No image
|
||||
[],
|
||||
# Single-scale
|
||||
[1.0],
|
||||
# Single-scale, batched
|
||||
[1.0, 1.0, 1.0],
|
||||
# Multi-scale
|
||||
[0.25, 0.5, 1.0],
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("dtype", [target_dtype])
|
||||
@pytest.mark.parametrize("max_tokens", [128])
|
||||
@pytest.mark.parametrize("num_logprobs", [10])
|
||||
def test_multi_images_models(hf_runner, vllm_runner, image_assets, model,
|
||||
size_factors, dtype: str, max_tokens: int,
|
||||
num_logprobs: int) -> None:
|
||||
images = [asset.pil_image for asset in image_assets]
|
||||
|
||||
inputs_per_case = [
|
||||
([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors],
|
||||
[[rescale_image_size(image, factor) for image in images]
|
||||
for factor in size_factors])
|
||||
]
|
||||
|
||||
run_test(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
inputs_per_case,
|
||||
model,
|
||||
dtype=dtype,
|
||||
max_tokens=max_tokens,
|
||||
num_logprobs=num_logprobs,
|
||||
mm_limit=2,
|
||||
tensor_parallel_size=1,
|
||||
)
|
@ -326,7 +326,7 @@ _MULTIMODAL_EXAMPLE_MODELS = {
|
||||
extras={"fp8": "nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"}), # noqa: E501
|
||||
"MolmoForCausalLM": _HfExamplesInfo("allenai/Molmo-7B-D-0924",
|
||||
max_transformers_version="4.48",
|
||||
transformers_version_reason="Use of private method which no longer exists.", # noqa: E501
|
||||
transformers_version_reason="Incorrectly-detected `tensorflow` import.", # noqa: E501
|
||||
extras={"olmo": "allenai/Molmo-7B-O-0924"}, # noqa: E501
|
||||
trust_remote_code=True),
|
||||
"NVLM_D": _HfExamplesInfo("nvidia/NVLM-D-72B",
|
||||
@ -335,6 +335,8 @@ _MULTIMODAL_EXAMPLE_MODELS = {
|
||||
extras={"v2": "google/paligemma2-3b-ft-docci-448"}), # noqa: E501
|
||||
"Phi3VForCausalLM": _HfExamplesInfo("microsoft/Phi-3-vision-128k-instruct",
|
||||
trust_remote_code=True,
|
||||
max_transformers_version="4.48",
|
||||
transformers_version_reason="Use of deprecated imports which have been removed.", # noqa: E501
|
||||
extras={"phi3.5": "microsoft/Phi-3.5-vision-instruct"}), # noqa: E501
|
||||
"Phi4MMForCausalLM": _HfExamplesInfo("microsoft/Phi-4-multimodal-instruct",
|
||||
trust_remote_code=True),
|
||||
@ -351,8 +353,7 @@ _MULTIMODAL_EXAMPLE_MODELS = {
|
||||
"SkyworkR1VChatModel": _HfExamplesInfo("Skywork/Skywork-R1V-38B"),
|
||||
"SmolVLMForConditionalGeneration": _HfExamplesInfo("HuggingFaceTB/SmolVLM2-2.2B-Instruct"), # noqa: E501
|
||||
"UltravoxModel": _HfExamplesInfo("fixie-ai/ultravox-v0_5-llama-3_2-1b", # noqa: E501
|
||||
trust_remote_code=True,
|
||||
max_transformers_version="4.50"),
|
||||
trust_remote_code=True),
|
||||
# [Encoder-decoder]
|
||||
# Florence-2 uses BartFastTokenizer which can't be loaded from AutoTokenizer
|
||||
# Therefore, we borrow the BartTokenizer from the original Bart model
|
||||
|
Loading…
x
Reference in New Issue
Block a user