[Misc] Upgrade to pytorch 2.5 (#9588)

Signed-off-by: Bill Nell <bill@neuralmagic.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
bnellnm 2024-10-27 05:44:24 -04:00 committed by GitHub
parent 8549c82660
commit 3cb07a36a2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 47 additions and 24 deletions

View File

@ -49,7 +49,7 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx11
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.4.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.5.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0")
#
@ -507,7 +507,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 013f0c4fc47e6574060879d9734c1df8c5c273bd
GIT_TAG 5259c586c403a4e4d8bf69973c159b40cc346fb9
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -424,11 +424,7 @@ function (define_gpu_extension_target GPU_MOD_NAME)
# Don't use `TORCH_LIBRARIES` for CUDA since it pulls in a bunch of
# dependencies that are not necessary and may not be installed.
if (GPU_LANGUAGE STREQUAL "CUDA")
if ("${CUDA_CUDA_LIB}" STREQUAL "")
set(CUDA_CUDA_LIB "${CUDA_CUDA_LIBRARY}")
endif()
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${CUDA_CUDA_LIB}
${CUDA_LIBRARIES})
target_link_libraries(${GPU_MOD_NAME} PRIVATE CUDA::cudart CUDA::cuda_driver)
else()
target_link_libraries(${GPU_MOD_NAME} PRIVATE ${TORCH_LIBRARIES})
endif()

View File

@ -6,7 +6,7 @@ requires = [
"packaging",
"setuptools>=61",
"setuptools-scm>=8.0",
"torch == 2.4.0",
"torch == 2.5.0",
"wheel",
"jinja2",
]

View File

@ -4,6 +4,6 @@ ninja
packaging
setuptools>=61
setuptools-scm>=8
torch==2.4.0
torch==2.5.0
wheel
jinja2

View File

@ -4,7 +4,7 @@
# Dependencies for NVIDIA GPUs
ray >= 2.9
nvidia-ml-py # for pynvml package
torch == 2.4.0
torch == 2.5.0
# These must be updated alongside torch
torchvision == 0.19 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
xformers == 0.0.27.post2; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch 2.4.0
torchvision == 0.20 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
xformers == 0.0.28.post2; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch 2.5.0

View File

@ -1,7 +1,7 @@
# Common dependencies
-r requirements-common.txt
torch == 2.4.0 # should be aligned with "common" vLLM torch version
torch == 2.5.0 # should be aligned with "common" vLLM torch version
openvino >= 2024.4.0 # since 2024.4.0 both CPU and GPU support Paged Attention
optimum @ git+https://github.com/huggingface/optimum.git@main # latest optimum is used to support latest transformers version

View File

@ -8,7 +8,7 @@ import pytest
from vllm.platforms import current_platform
from ...utils import check_outputs_equal
from ...utils import check_logprobs_close, check_outputs_equal
MODELS = [
"meta-llama/Llama-2-7b-hf",
@ -43,11 +43,33 @@ def test_models(
dtype: str,
max_tokens: int,
) -> None:
if model == "openbmb/MiniCPM3-4B":
# the output becomes slightly different when upgrading to
# pytorch 2.5 . Changing to logprobs checks instead of exact
# output checks.
NUM_LOG_PROBS = 8
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, NUM_LOG_PROBS)
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
else:
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
vllm_outputs = vllm_model.generate_greedy(example_prompts,
max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,

View File

@ -7,6 +7,7 @@ from functools import lru_cache, wraps
from typing import Callable, List, Tuple, TypeVar
import pynvml
import torch
from typing_extensions import ParamSpec
from vllm.logger import init_logger
@ -26,6 +27,10 @@ if pynvml.__file__.endswith("__init__.py"):
" and cause errors. See https://pypi.org/project/pynvml "
"for more information.")
# pytorch 2.5 uses cudnn sdpa by default, which will cause crash on some models
# see https://github.com/huggingface/diffusers/issues/9704 for details
torch.backends.cuda.enable_cudnn_sdp(False)
# NVML utils
# Note that NVML is not affected by `CUDA_VISIBLE_DEVICES`,
# all the related functions work on real physical device ids.