[Doc] Add documentation for Structured Outputs (#9943)
Signed-off-by: ismael-dm <ismaeldm99@gmail.com>
This commit is contained in:
parent
7851b45196
commit
31894a2155
@ -101,6 +101,7 @@ Documentation
|
||||
models/engine_args
|
||||
models/lora
|
||||
models/vlm
|
||||
models/structured_outputs
|
||||
models/spec_decode
|
||||
models/performance
|
||||
|
||||
|
173
docs/source/models/structured_outputs.rst
Normal file
173
docs/source/models/structured_outputs.rst
Normal file
@ -0,0 +1,173 @@
|
||||
.. _structured_outputs:
|
||||
|
||||
Structured Outputs
|
||||
==================
|
||||
|
||||
vLLM supports the generation of structured outputs using `outlines <https://github.com/dottxt-ai/outlines>`_ or `lm-format-enforcer <https://github.com/noamgat/lm-format-enforcer>`_ as backends for the guided decoding.
|
||||
This document shows you some examples of the different options that are available to generate structured outputs.
|
||||
|
||||
|
||||
Online Inference (OpenAI API)
|
||||
-----------------------------
|
||||
|
||||
You can generate structured outputs using the OpenAI’s `Completions <https://platform.openai.com/docs/api-reference/completions>`_ and `Chat <https://platform.openai.com/docs/api-reference/chat>`_ API.
|
||||
|
||||
The following parameters are supported, which must be added as extra parameters:
|
||||
|
||||
- ``guided_choice``: the output will be exactly one of the choices.
|
||||
- ``guided_regex``: the output will follow the regex pattern.
|
||||
- ``guided_json``: the output will follow the JSON schema.
|
||||
- ``guided_grammar``: the output will follow the context free grammar.
|
||||
- ``guided_whitespace_pattern``: used to override the default whitespace pattern for guided json decoding.
|
||||
- ``guided_decoding_backend``: used to select the guided decoding backend to use.
|
||||
|
||||
You can see the complete list of supported parameters on the `OpenAI Compatible Server </../serving/openai_compatible_server.html>`_ page.
|
||||
|
||||
Now let´s see an example for each of the cases, starting with the ``guided_choice``, as it´s the easiest one:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from openai import OpenAI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8000/v1",
|
||||
api_key="-",
|
||||
)
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[
|
||||
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
|
||||
],
|
||||
extra_body={"guided_choice": ["positive", "negative"]},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
|
||||
|
||||
The next example shows how to use the ``guided_regex``. The idea is to generate an email address, given a simple regex template:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate an example email address for Alan Turing, who works in Enigma. End in .com and new line. Example result: alan.turing@enigma.com\n",
|
||||
}
|
||||
],
|
||||
extra_body={"guided_regex": "\w+@\w+\.com\n", "stop": ["\n"]},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
|
||||
One of the most relevant features in structured text generation is the option to generate a valid JSON with pre-defined fields and formats.
|
||||
For this we can use the ``guided_json`` parameter in two different ways:
|
||||
|
||||
- Using directly a `JSON Schema <https://json-schema.org/>`_
|
||||
- Defining a `Pydantic model <https://docs.pydantic.dev/latest/>`_ and then extracting the JSON Schema from it (which is normally an easier option).
|
||||
|
||||
The next example shows how to use the ``guided_json`` parameter with a Pydantic model:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from pydantic import BaseModel
|
||||
from enum import Enum
|
||||
|
||||
class CarType(str, Enum):
|
||||
sedan = "sedan"
|
||||
suv = "SUV"
|
||||
truck = "Truck"
|
||||
coupe = "Coupe"
|
||||
|
||||
|
||||
class CarDescription(BaseModel):
|
||||
brand: str
|
||||
model: str
|
||||
car_type: CarType
|
||||
|
||||
|
||||
json_schema = CarDescription.model_json_schema()
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate a JSON with the brand, model and car_type of the most iconic car from the 90's",
|
||||
}
|
||||
],
|
||||
extra_body={"guided_json": json_schema},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
|
||||
.. tip::
|
||||
While not strictly necessary, normally it´s better to indicate in the prompt that a JSON needs to be generated and which fields and how should the LLM fill them.
|
||||
This can improve the results notably in most cases.
|
||||
|
||||
|
||||
Finally we have the ``guided_grammar``, which probably is the most difficult one to use but it´s really powerful, as it allows us to define complete languages like SQL queries.
|
||||
It works by using a context free EBNF grammar, which for example we can use to define a specific format of simplified SQL queries, like in the example below:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
simplified_sql_grammar = """
|
||||
?start: select_statement
|
||||
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
|
||||
?column_list: column_name ("," column_name)*
|
||||
|
||||
?table_name: identifier
|
||||
|
||||
?column_name: identifier
|
||||
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
"""
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Generate an SQL query to show the 'username' and 'email' from the 'users' table.",
|
||||
}
|
||||
],
|
||||
extra_body={"guided_grammar": simplified_sql_grammar},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
|
||||
The complete code of the examples can be found on `examples/openai_chat_completion_structured_outputs.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_structured_outputs.py>`_.
|
||||
|
||||
|
||||
Offline Inference
|
||||
-----------------
|
||||
|
||||
Offline inference allows for the same types of guided decoding.
|
||||
To use it, we´ll need to configure the guided decoding using the class ``GuidedDecodingParams`` inside ``SamplingParams``.
|
||||
The main available options inside ``GuidedDecodingParams`` are:
|
||||
|
||||
- ``json``
|
||||
- ``regex``
|
||||
- ``choice``
|
||||
- ``grammar``
|
||||
- ``backend``
|
||||
- ``whitespace_pattern``
|
||||
|
||||
These parameters can be used in the same way as the parameters from the Online Inference examples above.
|
||||
One example for the usage of the ``choices`` parameter is shown below:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.sampling_params import GuidedDecodingParams
|
||||
|
||||
llm = LLM(model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
|
||||
|
||||
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
|
||||
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
|
||||
outputs = llm.generate(
|
||||
prompts="Classify this sentiment: vLLM is wonderful!",
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
print(outputs[0].outputs[0].text)
|
||||
|
||||
A complete example with all options can be found in `examples/offline_inference_structured_outputs.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_structured_outputs.py>`_.
|
78
examples/offline_inference_structured_outputs.py
Normal file
78
examples/offline_inference_structured_outputs.py
Normal file
@ -0,0 +1,78 @@
|
||||
from enum import Enum
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.sampling_params import GuidedDecodingParams
|
||||
|
||||
llm = LLM(model="Qwen/Qwen2.5-3B-Instruct", max_model_len=100)
|
||||
|
||||
# Guided decoding by Choice (list of possible options)
|
||||
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
|
||||
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
|
||||
outputs = llm.generate(
|
||||
prompts="Classify this sentiment: vLLM is wonderful!",
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
print(outputs[0].outputs[0].text)
|
||||
|
||||
# Guided decoding by Regex
|
||||
guided_decoding_params = GuidedDecodingParams(regex="\w+@\w+\.com\n")
|
||||
sampling_params = SamplingParams(guided_decoding=guided_decoding_params,
|
||||
stop=["\n"])
|
||||
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
|
||||
"End in .com and new line. Example result:"
|
||||
"alan.turing@enigma.com\n")
|
||||
outputs = llm.generate(prompts=prompt, sampling_params=sampling_params)
|
||||
print(outputs[0].outputs[0].text)
|
||||
|
||||
|
||||
# Guided decoding by JSON using Pydantic schema
|
||||
class CarType(str, Enum):
|
||||
sedan = "sedan"
|
||||
suv = "SUV"
|
||||
truck = "Truck"
|
||||
coupe = "Coupe"
|
||||
|
||||
|
||||
class CarDescription(BaseModel):
|
||||
brand: str
|
||||
model: str
|
||||
car_type: CarType
|
||||
|
||||
|
||||
json_schema = CarDescription.model_json_schema()
|
||||
|
||||
guided_decoding_params = GuidedDecodingParams(json=json_schema)
|
||||
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
|
||||
prompt = ("Generate a JSON with the brand, model and car_type of"
|
||||
"the most iconic car from the 90's")
|
||||
outputs = llm.generate(
|
||||
prompts=prompt,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
print(outputs[0].outputs[0].text)
|
||||
|
||||
# Guided decoding by Grammar
|
||||
simplified_sql_grammar = """
|
||||
?start: select_statement
|
||||
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
|
||||
?column_list: column_name ("," column_name)*
|
||||
|
||||
?table_name: identifier
|
||||
|
||||
?column_name: identifier
|
||||
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
"""
|
||||
guided_decoding_params = GuidedDecodingParams(grammar=simplified_sql_grammar)
|
||||
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
|
||||
prompt = ("Generate an SQL query to show the 'username' and 'email'"
|
||||
"from the 'users' table.")
|
||||
outputs = llm.generate(
|
||||
prompts=prompt,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
print(outputs[0].outputs[0].text)
|
94
examples/openai_chat_completion_structured_outputs.py
Normal file
94
examples/openai_chat_completion_structured_outputs.py
Normal file
@ -0,0 +1,94 @@
|
||||
from enum import Enum
|
||||
|
||||
from openai import OpenAI
|
||||
from pydantic import BaseModel
|
||||
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8000/v1",
|
||||
api_key="-",
|
||||
)
|
||||
|
||||
# Guided decoding by Choice (list of possible options)
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": "Classify this sentiment: vLLM is wonderful!"
|
||||
}],
|
||||
extra_body={"guided_choice": ["positive", "negative"]},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
|
||||
# Guided decoding by Regex
|
||||
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
|
||||
"End in .com and new line. Example result:"
|
||||
"alan.turing@enigma.com\n")
|
||||
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}],
|
||||
extra_body={
|
||||
"guided_regex": "\w+@\w+\.com\n",
|
||||
"stop": ["\n"]
|
||||
},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
|
||||
|
||||
# Guided decoding by JSON using Pydantic schema
|
||||
class CarType(str, Enum):
|
||||
sedan = "sedan"
|
||||
suv = "SUV"
|
||||
truck = "Truck"
|
||||
coupe = "Coupe"
|
||||
|
||||
|
||||
class CarDescription(BaseModel):
|
||||
brand: str
|
||||
model: str
|
||||
car_type: CarType
|
||||
|
||||
|
||||
json_schema = CarDescription.model_json_schema()
|
||||
|
||||
prompt = ("Generate a JSON with the brand, model and car_type of"
|
||||
"the most iconic car from the 90's")
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}],
|
||||
extra_body={"guided_json": json_schema},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
||||
|
||||
# Guided decoding by Grammar
|
||||
simplified_sql_grammar = """
|
||||
?start: select_statement
|
||||
|
||||
?select_statement: "SELECT " column_list " FROM " table_name
|
||||
|
||||
?column_list: column_name ("," column_name)*
|
||||
|
||||
?table_name: identifier
|
||||
|
||||
?column_name: identifier
|
||||
|
||||
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
|
||||
"""
|
||||
|
||||
prompt = ("Generate an SQL query to show the 'username' and 'email'"
|
||||
"from the 'users' table.")
|
||||
completion = client.chat.completions.create(
|
||||
model="Qwen/Qwen2.5-3B-Instruct",
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}],
|
||||
extra_body={"guided_grammar": simplified_sql_grammar},
|
||||
)
|
||||
print(completion.choices[0].message.content)
|
Loading…
x
Reference in New Issue
Block a user