[Doc] Add documentation for Structured Outputs (#9943)

Signed-off-by: ismael-dm <ismaeldm99@gmail.com>
This commit is contained in:
ismael-dm 2024-11-18 18:52:12 +01:00 committed by GitHub
parent 7851b45196
commit 31894a2155
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 346 additions and 0 deletions

View File

@ -101,6 +101,7 @@ Documentation
models/engine_args
models/lora
models/vlm
models/structured_outputs
models/spec_decode
models/performance

View File

@ -0,0 +1,173 @@
.. _structured_outputs:
Structured Outputs
==================
vLLM supports the generation of structured outputs using `outlines <https://github.com/dottxt-ai/outlines>`_ or `lm-format-enforcer <https://github.com/noamgat/lm-format-enforcer>`_ as backends for the guided decoding.
This document shows you some examples of the different options that are available to generate structured outputs.
Online Inference (OpenAI API)
-----------------------------
You can generate structured outputs using the OpenAIs `Completions <https://platform.openai.com/docs/api-reference/completions>`_ and `Chat <https://platform.openai.com/docs/api-reference/chat>`_ API.
The following parameters are supported, which must be added as extra parameters:
- ``guided_choice``: the output will be exactly one of the choices.
- ``guided_regex``: the output will follow the regex pattern.
- ``guided_json``: the output will follow the JSON schema.
- ``guided_grammar``: the output will follow the context free grammar.
- ``guided_whitespace_pattern``: used to override the default whitespace pattern for guided json decoding.
- ``guided_decoding_backend``: used to select the guided decoding backend to use.
You can see the complete list of supported parameters on the `OpenAI Compatible Server </../serving/openai_compatible_server.html>`_ page.
Now let´s see an example for each of the cases, starting with the ``guided_choice``, as it´s the easiest one:
.. code-block:: python
from openai import OpenAI
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="-",
)
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"}
],
extra_body={"guided_choice": ["positive", "negative"]},
)
print(completion.choices[0].message.content)
The next example shows how to use the ``guided_regex``. The idea is to generate an email address, given a simple regex template:
.. code-block:: python
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{
"role": "user",
"content": "Generate an example email address for Alan Turing, who works in Enigma. End in .com and new line. Example result: alan.turing@enigma.com\n",
}
],
extra_body={"guided_regex": "\w+@\w+\.com\n", "stop": ["\n"]},
)
print(completion.choices[0].message.content)
One of the most relevant features in structured text generation is the option to generate a valid JSON with pre-defined fields and formats.
For this we can use the ``guided_json`` parameter in two different ways:
- Using directly a `JSON Schema <https://json-schema.org/>`_
- Defining a `Pydantic model <https://docs.pydantic.dev/latest/>`_ and then extracting the JSON Schema from it (which is normally an easier option).
The next example shows how to use the ``guided_json`` parameter with a Pydantic model:
.. code-block:: python
from pydantic import BaseModel
from enum import Enum
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
json_schema = CarDescription.model_json_schema()
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{
"role": "user",
"content": "Generate a JSON with the brand, model and car_type of the most iconic car from the 90's",
}
],
extra_body={"guided_json": json_schema},
)
print(completion.choices[0].message.content)
.. tip::
While not strictly necessary, normally it´s better to indicate in the prompt that a JSON needs to be generated and which fields and how should the LLM fill them.
This can improve the results notably in most cases.
Finally we have the ``guided_grammar``, which probably is the most difficult one to use but it´s really powerful, as it allows us to define complete languages like SQL queries.
It works by using a context free EBNF grammar, which for example we can use to define a specific format of simplified SQL queries, like in the example below:
.. code-block:: python
simplified_sql_grammar = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[
{
"role": "user",
"content": "Generate an SQL query to show the 'username' and 'email' from the 'users' table.",
}
],
extra_body={"guided_grammar": simplified_sql_grammar},
)
print(completion.choices[0].message.content)
The complete code of the examples can be found on `examples/openai_chat_completion_structured_outputs.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_structured_outputs.py>`_.
Offline Inference
-----------------
Offline inference allows for the same types of guided decoding.
To use it, we´ll need to configure the guided decoding using the class ``GuidedDecodingParams`` inside ``SamplingParams``.
The main available options inside ``GuidedDecodingParams`` are:
- ``json``
- ``regex``
- ``choice``
- ``grammar``
- ``backend``
- ``whitespace_pattern``
These parameters can be used in the same way as the parameters from the Online Inference examples above.
One example for the usage of the ``choices`` parameter is shown below:
.. code-block:: python
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
llm = LLM(model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
outputs = llm.generate(
prompts="Classify this sentiment: vLLM is wonderful!",
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)
A complete example with all options can be found in `examples/offline_inference_structured_outputs.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_structured_outputs.py>`_.

View File

@ -0,0 +1,78 @@
from enum import Enum
from pydantic import BaseModel
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
llm = LLM(model="Qwen/Qwen2.5-3B-Instruct", max_model_len=100)
# Guided decoding by Choice (list of possible options)
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
outputs = llm.generate(
prompts="Classify this sentiment: vLLM is wonderful!",
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)
# Guided decoding by Regex
guided_decoding_params = GuidedDecodingParams(regex="\w+@\w+\.com\n")
sampling_params = SamplingParams(guided_decoding=guided_decoding_params,
stop=["\n"])
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
"End in .com and new line. Example result:"
"alan.turing@enigma.com\n")
outputs = llm.generate(prompts=prompt, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
# Guided decoding by JSON using Pydantic schema
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
json_schema = CarDescription.model_json_schema()
guided_decoding_params = GuidedDecodingParams(json=json_schema)
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
prompt = ("Generate a JSON with the brand, model and car_type of"
"the most iconic car from the 90's")
outputs = llm.generate(
prompts=prompt,
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)
# Guided decoding by Grammar
simplified_sql_grammar = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
guided_decoding_params = GuidedDecodingParams(grammar=simplified_sql_grammar)
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
prompt = ("Generate an SQL query to show the 'username' and 'email'"
"from the 'users' table.")
outputs = llm.generate(
prompts=prompt,
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)

View File

@ -0,0 +1,94 @@
from enum import Enum
from openai import OpenAI
from pydantic import BaseModel
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="-",
)
# Guided decoding by Choice (list of possible options)
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": "Classify this sentiment: vLLM is wonderful!"
}],
extra_body={"guided_choice": ["positive", "negative"]},
)
print(completion.choices[0].message.content)
# Guided decoding by Regex
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
"End in .com and new line. Example result:"
"alan.turing@enigma.com\n")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={
"guided_regex": "\w+@\w+\.com\n",
"stop": ["\n"]
},
)
print(completion.choices[0].message.content)
# Guided decoding by JSON using Pydantic schema
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
json_schema = CarDescription.model_json_schema()
prompt = ("Generate a JSON with the brand, model and car_type of"
"the most iconic car from the 90's")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_json": json_schema},
)
print(completion.choices[0].message.content)
# Guided decoding by Grammar
simplified_sql_grammar = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
prompt = ("Generate an SQL query to show the 'username' and 'email'"
"from the 'users' table.")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_grammar": simplified_sql_grammar},
)
print(completion.choices[0].message.content)