[Model] Support Tele-FLM Model (#15023)

Signed-off-by: Naitong Yu <ntyu@baai.ac.cn>
Signed-off-by: jiangxin <horizon94@outlook.com>
Co-authored-by: Jason Fang <jasonfang3900@gmail.com>
Co-authored-by: jiangxin <horizon94@outlook.com>
This commit is contained in:
Naitong Yu 2025-03-22 17:04:44 +08:00 committed by GitHub
parent 8a8b30eac1
commit 2f4bd358f1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 99 additions and 0 deletions

View File

@ -472,6 +472,11 @@ See [this page](#generative-models) for more information on how to use generativ
* `Tele-AI/TeleChat2-3B`, `Tele-AI/TeleChat2-7B`, `Tele-AI/TeleChat2-35B`, etc.
* ✅︎
* ✅︎
- * `TeleFLMForCausalLM`
* TeleFLM
* `CofeAI/FLM-2-52B-Instruct-2407`, `CofeAI/Tele-FLM`, etc.
* ✅︎
* ✅︎
- * `XverseForCausalLM`
* XVERSE
* `xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.

View File

@ -0,0 +1,12 @@
{%- for message in messages %}
{%- if message['role'] == 'user' %}
{{- '<_user>' + message['content']|trim }}
{%- elif message['role'] == 'system' %}
{{- '<_system>' + message['content']|trim }}
{%- elif message['role'] == 'assistant' %}
{{- '<_bot>' + message['content'] }}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<_bot>' }}
{%- endif %}

View File

@ -192,6 +192,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"SolarForCausalLM": _HfExamplesInfo("upstage/solar-pro-preview-instruct"),
"TeleChat2ForCausalLM": _HfExamplesInfo("Tele-AI/TeleChat2-3B",
trust_remote_code=True),
"TeleFLMForCausalLM": _HfExamplesInfo("CofeAI/FLM-2-52B-Instruct-2407",
trust_remote_code=True),
"XverseForCausalLM": _HfExamplesInfo("xverse/XVERSE-7B-Chat",
is_available_online=False,
trust_remote_code=True),

View File

@ -104,6 +104,7 @@ _TEXT_GENERATION_MODELS = {
"Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"),
"SolarForCausalLM": ("solar", "SolarForCausalLM"),
"TeleChat2ForCausalLM": ("telechat2", "TeleChat2ForCausalLM"),
"TeleFLMForCausalLM": ("teleflm", "TeleFLMForCausalLM"),
"XverseForCausalLM": ("llama", "LlamaForCausalLM"),
"Zamba2ForCausalLM": ("zamba2", "Zamba2ForCausalLM"),
# [Encoder-decoder]

View File

@ -0,0 +1,79 @@
# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Type
import torch
from vllm.config import VllmConfig
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.models.llama import (LlamaDecoderLayer,
LlamaForCausalLM, LlamaModel)
class TeleFLMModel(LlamaModel):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: Type[LlamaDecoderLayer] = LlamaDecoderLayer,
):
super().__init__(vllm_config=vllm_config,
prefix=prefix,
layer_type=layer_type)
"""
This implementation is based on the µScaling paper presented at
the ICLR 2025 Workshop:
NanoLM: An Affordable LLM Study Benchmark \
via Accurate Loss Prediction across Scales
by Yiqun Yao et al.
Available at: https://openreview.net/forum?id=IwaPYg1SCA
arXiv preprint: https://arxiv.org/abs/2304.06875
"""
self.use_mup = self.config.use_mup
if self.use_mup:
self.input_mult = self.config.input_mult
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
embedding = self.embed_tokens(input_ids)
if self.use_mup:
embedding = embedding * self.input_mult
return embedding
class TeleFLMForCausalLM(LlamaForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
# mup
self.use_mup = self.config.use_mup
if self.use_mup:
self.mup_scale_factor = self.config.mup_scale_factor
self.output_mult = self.config.output_mult / self.mup_scale_factor
logit_scale = self.output_mult
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
self.config.vocab_size,
logit_scale)