fix: change GB to GiB in logging close #14979 (#15807)

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
This commit is contained in:
yihong 2025-04-01 01:00:50 +08:00 committed by GitHub
parent 239b7befdd
commit 2de4118243
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 11 additions and 11 deletions

View File

@ -488,9 +488,9 @@ def check_enough_kv_cache_memory(vllm_config: VllmConfig,
if needed_memory > available_memory: if needed_memory > available_memory:
raise ValueError( raise ValueError(
f"To serve at least one request with the models's max seq len " f"To serve at least one request with the models's max seq len "
f"({max_model_len}), ({needed_memory/1024/1024/1024:.2f} GB KV " f"({max_model_len}), ({needed_memory/1024/1024/1024:.2f} GiB KV "
f"cache is needed, which is larger than the available KV cache " f"cache is needed, which is larger than the available KV cache "
f"memory ({available_memory/1024/1024/1024:.2f} GB). Try " f"memory ({available_memory/1024/1024/1024:.2f} GiB). Try "
f"increasing `gpu_memory_utilization` or decreasing " f"increasing `gpu_memory_utilization` or decreasing "
f"`max_model_len` when initializing the engine.") f"`max_model_len` when initializing the engine.")

View File

@ -24,8 +24,8 @@ from vllm.multimodal.utils import group_mm_inputs_by_modality
from vllm.sampling_params import SamplingType from vllm.sampling_params import SamplingType
from vllm.sequence import IntermediateTensors from vllm.sequence import IntermediateTensors
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler, from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler,
LayerBlockType, LazyLoader, cdiv, check_use_alibi, GiB_bytes, LayerBlockType, LazyLoader, cdiv,
is_pin_memory_available) check_use_alibi, is_pin_memory_available)
from vllm.v1.attention.backends.flash_attn import FlashAttentionMetadata from vllm.v1.attention.backends.flash_attn import FlashAttentionMetadata
from vllm.v1.core.encoder_cache_manager import compute_encoder_budget from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig, from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
@ -1206,8 +1206,8 @@ class GPUModelRunner(LoRAModelRunnerMixin):
self.device) self.device)
time_after_load = time.perf_counter() time_after_load = time.perf_counter()
self.model_memory_usage = m.consumed_memory self.model_memory_usage = m.consumed_memory
logger.info("Model loading took %.4f GB and %.6f seconds", logger.info("Model loading took %.4f GiB and %.6f seconds",
self.model_memory_usage / float(2**30), self.model_memory_usage / GiB_bytes,
time_after_load - time_before_load) time_after_load - time_before_load)
def _get_prompt_logprobs_dict( def _get_prompt_logprobs_dict(

View File

@ -1143,8 +1143,8 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
time_after_load = time.perf_counter() time_after_load = time.perf_counter()
self.model_memory_usage = m.consumed_memory self.model_memory_usage = m.consumed_memory
logger.info("Model loading took %.4f GB and %.6f seconds", logger.info("Model loading took %.4f GiB and %.6f seconds",
self.model_memory_usage / float(2**30), self.model_memory_usage / GiB_bytes,
time_after_load - time_before_load) time_after_load - time_before_load)
if self.prompt_adapter_config: if self.prompt_adapter_config:
self.prompt_adapter_manager = LRUCacheWorkerPromptAdapterManager( self.prompt_adapter_manager = LRUCacheWorkerPromptAdapterManager(

View File

@ -25,7 +25,7 @@ from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
MultiModalRegistry) MultiModalRegistry)
from vllm.sampling_params import SamplingParams from vllm.sampling_params import SamplingParams
from vllm.sequence import IntermediateTensors, SequenceGroupMetadata from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
from vllm.utils import DeviceMemoryProfiler, make_tensor_with_pad from vllm.utils import DeviceMemoryProfiler, GiB_bytes, make_tensor_with_pad
from vllm.worker.model_runner import AttentionMetadata, SamplingMetadata from vllm.worker.model_runner import AttentionMetadata, SamplingMetadata
from vllm.worker.model_runner_base import ( from vllm.worker.model_runner_base import (
ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase, ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
@ -422,8 +422,8 @@ class XPUModelRunner(ModelRunnerBase[ModelInputForXPUWithSamplingMetadata]):
self.model = get_model(vllm_config=self.vllm_config) self.model = get_model(vllm_config=self.vllm_config)
self.model_memory_usage = m.consumed_memory self.model_memory_usage = m.consumed_memory
logger.info("Loading model weights took %.4f GB", logger.info("Loading model weights took %.4f GiB",
self.model_memory_usage / float(2**30)) self.model_memory_usage / GiB_bytes)
def get_model(self) -> nn.Module: def get_model(self) -> nn.Module:
return self.model return self.model