Fix seed parameter behavior in vLLM (#13007)

Signed-off-by: மனோஜ்குமார் பழனிச்சாமி <smartmanoj42857@gmail.com>
This commit is contained in:
மனோஜ்குமார் பழனிச்சாமி 2025-02-10 20:56:50 +05:30 committed by GitHub
parent 51f0b5f7f6
commit 2ae889052c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 95 additions and 4 deletions

View File

@ -0,0 +1,51 @@
# Seed Parameter Behavior in vLLM
## Overview
The `seed` parameter in vLLM is used to control the random states for various random number generators. This parameter can affect the behavior of random operations in user code, especially when working with models in vLLM.
## Default Behavior
By default, the `seed` parameter is set to `None`. When the `seed` parameter is `None`, the global random states for `random`, `np.random`, and `torch.manual_seed` are not set. This means that the random operations will behave as expected, without any fixed random states.
## Specifying a Seed
If a specific seed value is provided, the global random states for `random`, `np.random`, and `torch.manual_seed` will be set accordingly. This can be useful for reproducibility, as it ensures that the random operations produce the same results across multiple runs.
## Example Usage
### Without Specifying a Seed
```python
import random
from vllm import LLM
# Initialize a vLLM model without specifying a seed
model = LLM(model="Qwen/Qwen2.5-0.5B-Instruct")
# Try generating random numbers
print(random.randint(0, 100)) # Outputs different numbers across runs
```
### Specifying a Seed
```python
import random
from vllm import LLM
# Initialize a vLLM model with a specific seed
model = LLM(model="Qwen/Qwen2.5-0.5B-Instruct", seed=42)
# Try generating random numbers
print(random.randint(0, 100)) # Outputs the same number across runs
```
## Important Notes
- If the `seed` parameter is not specified, the behavior of global random states remains unaffected.
- If a specific seed value is provided, the global random states for `random`, `np.random`, and `torch.manual_seed` will be set to that value.
- This behavior can be useful for reproducibility but may lead to non-intuitive behavior if the user is not explicitly aware of it.
## Conclusion
Understanding the behavior of the `seed` parameter in vLLM is crucial for ensuring the expected behavior of random operations in your code. By default, the `seed` parameter is set to `None`, which means that the global random states are not affected. However, specifying a seed value can help achieve reproducibility in your experiments.

View File

@ -0,0 +1,39 @@
# SPDX-License-Identifier: Apache-2.0
import random
import numpy as np
import torch
from vllm.platforms.interface import Platform
def test_seed_behavior():
# Test with seed=None
Platform.seed_everything(None)
random_value_1 = random.randint(0, 100)
np_random_value_1 = np.random.randint(0, 100)
torch_random_value_1 = torch.randint(0, 100, (1, )).item()
Platform.seed_everything(None)
random_value_2 = random.randint(0, 100)
np_random_value_2 = np.random.randint(0, 100)
torch_random_value_2 = torch.randint(0, 100, (1, )).item()
assert random_value_1 != random_value_2
assert np_random_value_1 != np_random_value_2
assert torch_random_value_1 != torch_random_value_2
# Test with a specific seed
Platform.seed_everything(42)
random_value_3 = random.randint(0, 100)
np_random_value_3 = np.random.randint(0, 100)
torch_random_value_3 = torch.randint(0, 100, (1, )).item()
Platform.seed_everything(42)
random_value_4 = random.randint(0, 100)
np_random_value_4 = np.random.randint(0, 100)
torch_random_value_4 = torch.randint(0, 100, (1, )).item()
assert random_value_3 == random_value_4
assert np_random_value_3 == np_random_value_4
assert torch_random_value_3 == torch_random_value_4

View File

@ -211,16 +211,17 @@ class Platform:
return torch.inference_mode(mode=True)
@classmethod
def seed_everything(cls, seed: int) -> None:
def seed_everything(cls, seed: Optional[int] = None) -> None:
"""
Set the seed of each random module.
`torch.manual_seed` will set seed on all devices.
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if seed is not None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None: