[Core][Distributed] enable multiple tp group (#4512)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
This commit is contained in:
parent
cf8cac8c70
commit
2a85f93007
@ -25,19 +25,24 @@ steps:
|
||||
- label: Distributed Comm Ops Test
|
||||
command: pytest -v -s test_comm_ops.py
|
||||
working_dir: "/vllm-workspace/tests/distributed"
|
||||
num_gpus: 2 # only support 1 or 2 for now.
|
||||
num_gpus: 2
|
||||
|
||||
- label: Distributed Tests
|
||||
working_dir: "/vllm-workspace/tests/distributed"
|
||||
num_gpus: 2 # only support 1 or 2 for now.
|
||||
num_gpus: 2
|
||||
commands:
|
||||
- pytest -v -s test_pynccl.py
|
||||
- pytest -v -s test_pynccl_library.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_basic_distributed_correctness.py
|
||||
- TEST_DIST_MODEL=facebook/opt-125m pytest -v -s test_chunked_prefill_distributed.py
|
||||
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf pytest -v -s test_chunked_prefill_distributed.py
|
||||
|
||||
- label: Distributed Tests (Multiple Groups)
|
||||
working_dir: "/vllm-workspace/tests/distributed"
|
||||
num_gpus: 4
|
||||
commands:
|
||||
- pytest -v -s test_pynccl.py
|
||||
|
||||
- label: Engine Test
|
||||
command: pytest -v -s engine tokenization test_sequence.py test_config.py test_logger.py
|
||||
|
||||
|
@ -45,6 +45,9 @@ steps:
|
||||
plugins:
|
||||
- kubernetes:
|
||||
podSpec:
|
||||
{% if step.num_gpus %}
|
||||
priorityClassName: gpu-priority-cls-{{ step.num_gpus }}
|
||||
{% endif %}
|
||||
volumes:
|
||||
- name: dshm
|
||||
emptyDir:
|
||||
|
@ -58,6 +58,34 @@ def test_pynccl():
|
||||
distributed_run(worker_fn, 2)
|
||||
|
||||
|
||||
@worker_fn_wrapper
|
||||
def multiple_tp_worker_fn():
|
||||
device = torch.device(f"cuda:{torch.distributed.get_rank()}")
|
||||
groups = [
|
||||
torch.distributed.new_group(ranks=[0, 1], backend="gloo"),
|
||||
torch.distributed.new_group(ranks=[2, 3], backend="gloo")
|
||||
]
|
||||
group = groups[0] if torch.distributed.get_rank() in [0, 1] else groups[1]
|
||||
comm = NCCLCommunicator(group=group, device=device)
|
||||
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32).cuda(comm.rank)
|
||||
# two groups can communicate independently
|
||||
if torch.distributed.get_rank() in [0, 1]:
|
||||
comm.all_reduce(tensor)
|
||||
comm.all_reduce(tensor)
|
||||
result = tensor.mean().cpu().item()
|
||||
assert result == 4
|
||||
else:
|
||||
comm.all_reduce(tensor)
|
||||
result = tensor.mean().cpu().item()
|
||||
assert result == 2
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 4,
|
||||
reason="Need at least 2 GPUs to run the test.")
|
||||
def test_pynccl_multiple_tp():
|
||||
distributed_run(worker_fn, 4)
|
||||
|
||||
|
||||
@worker_fn_wrapper
|
||||
def worker_fn_with_cudagraph():
|
||||
with torch.no_grad():
|
||||
|
@ -232,6 +232,7 @@ class NCCLCommunicator:
|
||||
assert dist.get_backend(group) != dist.Backend.NCCL, (
|
||||
"NCCLCommunicator should be attached to a non-NCCL group.")
|
||||
self.group = group
|
||||
# note: this rank is the rank in the group
|
||||
self.rank = dist.get_rank(group)
|
||||
self.world_size = dist.get_world_size(group)
|
||||
if self.rank == 0:
|
||||
@ -239,7 +240,9 @@ class NCCLCommunicator:
|
||||
else:
|
||||
self.unique_id = NcclUniqueId()
|
||||
tensor = torch.ByteTensor(list(self.unique_id.internal))
|
||||
dist.broadcast(tensor, src=0, group=group)
|
||||
ranks = dist.get_process_group_ranks(group)
|
||||
# arg `src` in `broadcast` is the global rank
|
||||
dist.broadcast(tensor, src=ranks[0], group=group)
|
||||
byte_list = tensor.tolist()
|
||||
for i, byte in enumerate(byte_list):
|
||||
self.unique_id.internal[i] = byte
|
||||
|
Loading…
x
Reference in New Issue
Block a user