[CI] Prune back the number of tests in tests/kernels/* (#9932)

Signed-off-by: mgoin <michael@neuralmagic.com>
This commit is contained in:
Michael Goin 2024-11-05 16:02:32 -05:00 committed by GitHub
parent 02462465ea
commit 235366fe2e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 60 additions and 36 deletions

View File

@ -14,7 +14,7 @@ from .allclose_default import get_default_atol, get_default_rtol
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing
D = [512, 4096, 5120, 13824] # Arbitrary values for testing
D = [512, 13824] # Arbitrary values for testing
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)

View File

@ -33,7 +33,7 @@ NUM_HEADS = [(40, 40), (64, 8)] # Arbitrary values for testing
# FlashAttention forward only supports head dimension at most 128
# https://github.com/ROCmSoftwarePlatform/flash-attention/blob/3d2b6f5d037782cc2c906909a46fb7e2e1b48b25/csrc/flash_attn_rocm/flash_api.cpp#L62
HEAD_SIZES = [64, 80, 96, 112, 120, 128, 192, 256]
HEAD_SIZES = [64, 80, 120, 256]
BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]

View File

@ -14,13 +14,17 @@ from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
awq_marlin_quantize)
from vllm.scalar_type import scalar_types
NUM_EXPERTS = [8, 64]
TOP_KS = [2, 6]
GROUP_SIZES = [-1, 32, 128]
@pytest.mark.parametrize("m", [64, 512, 222, 33, 1])
@pytest.mark.parametrize("n", [128, 2048, 256, 1024])
@pytest.mark.parametrize("k", [128, 1024, 512])
@pytest.mark.parametrize("e", [8, 64])
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("group_size", [-1, 32, 64, 128])
@pytest.mark.parametrize("m", [1, 33, 64, 222])
@pytest.mark.parametrize("n", [128, 2048])
@pytest.mark.parametrize("k", [128, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("group_size", GROUP_SIZES)
@pytest.mark.skipif(not (ops.supports_moe_ops
and hasattr(torch.ops._moe_C, "marlin_gemm_moe")),
reason="Marlin is not supported on this GPU type.")

View File

@ -25,10 +25,10 @@ PARTITION_SIZE = 512
DTYPES = [torch.half, torch.bfloat16]
NUM_GEN_SEQS = [3] # Arbitrary values for testing
NUM_PREFILL_SEQS = [3] # Arbitrary values for testing
NUM_HEADS = [(40, 40), (64, 8)] # Arbitrary values for testing
NUM_HEADS = [(40, 40)] # Arbitrary values for testing
HEAD_SIZES = [64, 112]
BLOCK_SIZES = [16, 32]
BLOCK_SIZES = [16]
USE_ALIBI = [False, True]
KV_CACHE_DTYPE = ["auto", "fp8"]
SEEDS = [0]
@ -37,7 +37,7 @@ BLOCKSPARSE_LOCAL_BLOCKS = [16]
BLOCKSPARSE_VERT_STRIDES = [8]
BLOCKSPARSE_BLOCK_SIZES = [64]
BLOCKSPARSE_HEADS_SLIDINGS = [0, 2, -1]
BLOCKSPARSE_HEADS_SLIDINGS = [2, -1]
BLOCKSPARSE_HOMO_HEADS = [True, False]

View File

@ -13,7 +13,7 @@ DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [42] # Arbitrary values for testing
NUM_LAYERS = [1] # Arbitrary values for testing
NUM_HEADS = [8] # Arbitrary values for testing
HEAD_SIZES = [64, 80, 96, 112, 120, 128, 192, 256]
HEAD_SIZES = [64, 80, 120, 256]
BLOCK_SIZES = [8, 16, 32]
# Arbitrary values for testing

View File

@ -11,6 +11,28 @@ from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
MNK_FACTORS = [
(1, 256, 128),
(1, 16384, 1024),
(1, 24576, 496),
(16, 256, 496),
(16, 16384, 128),
(16, 24576, 4096),
(32, 8192, 4096),
(32, 16384, 4096),
(33, 1024, 1024),
(33, 8192, 128),
(64, 2048, 496),
(64, 16384, 1024),
(100, 8192, 496),
(128, 32768, 4096),
(256, 4096, 4096),
(512, 256, 1024),
(512, 8192, 4096),
(512, 16384, 128),
(512, 24576, 128),
]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
@ -116,9 +138,7 @@ def cutlass_int8_gemm_helper(m: int,
(out, a, b, scale_a, scale_b, bias))
@pytest.mark.parametrize("m", [1, 16, 32, 64, 128, 256, 512, 222, 100, 33])
@pytest.mark.parametrize("n", [2048, 4096, 8192, 16384, 24576, 256, 1024])
@pytest.mark.parametrize("k", [128, 496, 1024])
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
@ -129,9 +149,7 @@ def test_cutlass_fp8_gemm(m: int, n: int, k: int, per_act_token: bool,
cutlass_fp8_gemm_helper(m, n, k, per_act_token, per_out_ch, use_bias)
@pytest.mark.parametrize("m", [1, 16, 32, 64, 128, 256, 512, 222, 33, 1])
@pytest.mark.parametrize("n", [2048, 8192, 16384, 256, 1024])
@pytest.mark.parametrize("k", [128, 496, 1024])
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])

View File

@ -7,11 +7,10 @@ from vllm._custom_ops import scaled_int8_quant
from vllm.platforms import current_platform
DTYPES = [torch.half, torch.bfloat16, torch.float]
HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 5137, 8192,
8193] # Arbitrary values for testing
HIDDEN_SIZES = [16, 67, 768, 5137, 8193] # Arbitrary values for testing
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
SEEDS = [0]
SCALE = [0.1, 0.5, 0.8, 1.2, 2.1]
SCALE = [0.1, 2.1]
def opcheck_int8_quant_static(output, input, scale, azp=None):
@ -132,7 +131,7 @@ def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int,
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("scale", SCALE[2:]) # Reduce test time
@pytest.mark.parametrize("scale", SCALE)
@pytest.mark.parametrize("azp", [-255, 54])
@torch.inference_mode()
def test_static_scaled_int8_azp_quant(num_tokens: int, hidden_size: int,

View File

@ -35,7 +35,7 @@ K_FULL_OPTS = [False, True]
USE_FP32_REDUCE_OPTS = [False, True]
MARLIN_K_CHUNKS = [128]
MARLIN_N_CHUNKS = [64, 128, 256]
MARLIN_N_CHUNKS = [64, 256]
MARLIN_24_K_CHUNKS = [128]
MARLIN_24_N_CHUNKS = [512]

View File

@ -20,12 +20,15 @@ from vllm.model_executor.models.mixtral import MixtralMoE
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
NUM_EXPERTS = [8, 64]
TOP_KS = [2, 6]
@pytest.mark.parametrize("m", [1024 * 128, 512, 222, 33, 1])
@pytest.mark.parametrize("n", [2048, 256, 1024])
@pytest.mark.parametrize("m", [1, 33, 64, 222, 1024 * 128])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 511, 1024])
@pytest.mark.parametrize("e", [8, 64])
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
def test_fused_moe(
m: int,
@ -93,12 +96,12 @@ def test_mixtral_moe(dtype: torch.dtype):
atol=mixtral_moe_tol[dtype])
@pytest.mark.parametrize("m", [64, 512, 222, 33, 1])
@pytest.mark.parametrize("n", [128, 2048, 256, 1024])
@pytest.mark.parametrize("k", [128, 1024, 512])
@pytest.mark.parametrize("e", [8, 64])
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("group_size", [-1, 32, 64, 128])
@pytest.mark.parametrize("m", [1, 33, 64, 222])
@pytest.mark.parametrize("n", [128, 2048])
@pytest.mark.parametrize("k", [128, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("group_size", [-1, 32, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
@pytest.mark.parametrize("is_k_full", [True, False])

View File

@ -11,10 +11,10 @@ from .allclose_default import get_default_atol, get_default_rtol
IS_NEOX_STYLE = [True, False]
DTYPES = [torch.half, torch.bfloat16, torch.float]
HEAD_SIZES = [64, 80, 96, 112, 120, 128, 192, 256]
HEAD_SIZES = [64, 80, 112, 120, 256]
ROTARY_DIMS = [None, 32] # None means rotary dim == head size
NUM_HEADS = [7, 17] # Arbitrary values for testing
BATCH_SIZES = [1, 5] # Arbitrary values for testing
NUM_HEADS = [17] # Arbitrary values for testing
BATCH_SIZES = [5] # Arbitrary values for testing
SEQ_LENS = [11, 8192] # Arbitrary values for testing
SEEDS = [0]
CUDA_DEVICES = [