[Model] Support Mamba2 (Codestral Mamba) (#9292)

Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
This commit is contained in:
Tyler Michael Smith 2025-02-17 07:17:50 -05:00 committed by GitHub
parent 7b623fca0b
commit 1f69c4a892
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 376 additions and 65 deletions

View File

@ -4,6 +4,7 @@
Run `pytest tests/models/test_mamba.py`.
"""
import pytest
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from vllm.engine.arg_utils import EngineArgs
@ -11,7 +12,14 @@ from vllm.sampling_params import SamplingParams
from ...utils import check_outputs_equal
MODELS = ["state-spaces/mamba-130m-hf", "tiiuae/falcon-mamba-tiny-dev"]
MODELS = [
"state-spaces/mamba-130m-hf",
"tiiuae/falcon-mamba-tiny-dev",
# TODO: Compare to a Mamba2 model. The HF transformers implementation of
# Mamba2 is buggy for Codestral as it doesn't handle n_groups.
# See https://github.com/huggingface/transformers/pull/35943
# "mistralai/Mamba-Codestral-7B-v0.1",
]
# Use lower-level interfaces to create this greedy generator, as mamba will
@ -21,6 +29,10 @@ def generate_greedy(model_name, example_prompts, max_tokens):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Set the device (GPU if available, else CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Generate texts from the prompts
outputs = []
for prompt in example_prompts:
@ -29,7 +41,9 @@ def generate_greedy(model_name, example_prompts, max_tokens):
input_ids = inputs["input_ids"].to(model.device)
# Generate text using the model's generate method directly
generated_ids = model.generate(input_ids, max_new_tokens=max_tokens)
generated_ids = model.generate(input_ids,
max_new_tokens=max_tokens,
do_sample=False)
generated_text = tokenizer.decode(generated_ids[0],
skip_special_tokens=True)
@ -50,7 +64,8 @@ def test_models(
) -> None:
hf_outputs = generate_greedy(model, example_prompts, max_tokens)
with vllm_runner(model, dtype=dtype) as vllm_model:
# Set max_num_seqs to keep Codestral from going OOM at fp32
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
# This test is for verifying whether the model's extra_repr
@ -81,7 +96,7 @@ def test_batching(
) -> None:
# To pass the small model tests, we need full precision.
for_loop_outputs = []
with vllm_runner(model, dtype=dtype) as vllm_model:
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
for prompt in example_prompts:
for_loop_outputs.append(
vllm_model.generate_greedy([prompt], max_tokens)[0])
@ -165,20 +180,22 @@ def test_parallel_sampling(
max_tokens: int,
) -> None:
with vllm_runner(model, dtype=dtype) as vllm_model:
# Numerical differences produce slightly different output for these
if 'state-spaces' in model:
example_prompts.pop(0)
example_prompts.pop(0)
example_prompts.pop(0)
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
for_loop_outputs = []
for _ in range(10):
for_loop_outputs.append(
# using example_prompts index 1 instead of 0 since with 0 the
# logprobs get really close and the test doesn't pass
vllm_model.generate_greedy([example_prompts[1]], max_tokens)
[0])
vllm_model.generate_greedy(example_prompts, max_tokens)[0])
sampling_params = SamplingParams(n=10,
temperature=0.001,
seed=0,
max_tokens=max_tokens)
n_lt_1_outputs = vllm_model.generate([example_prompts[1]],
sampling_params)
n_lt_1_outputs = vllm_model.generate(example_prompts, sampling_params)
token_ids, texts = n_lt_1_outputs[0]
n_lt_1_outputs = [(token_id, text)
for token_id, text in zip(token_ids, texts)]
@ -232,7 +249,7 @@ def test_models_preemption_recompute(
# Tests that outputs are identical with and w/o preemtions (recompute)
assert dtype == "float"
with vllm_runner(model, dtype=dtype) as vllm_model:
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
vllm_model.model.llm_engine.scheduler[
0].ENABLE_ARTIFICIAL_PREEMPT = True
preempt_vllm_outputs = vllm_model.generate_greedy(
@ -283,7 +300,7 @@ def test_state_cleanup(
# This test is for verifying that the Mamba state is cleaned up between
# steps, If its not cleaned, an error would be expected.
try:
with vllm_runner(model, dtype=dtype) as vllm_model:
with vllm_runner(model, dtype=dtype, max_num_seqs=16) as vllm_model:
for _ in range(10):
vllm_model.generate_greedy([example_prompts[0]] * 100, 1)
except ValueError:

View File

@ -145,6 +145,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"LLaMAForCausalLM": _HfExamplesInfo("decapoda-research/llama-7b-hf",
is_available_online=False),
"MambaForCausalLM": _HfExamplesInfo("state-spaces/mamba-130m-hf"),
"Mamba2ForCausalLM": _HfExamplesInfo("mistralai/Mamba-Codestral-7B-v0.1",
is_available_online=False),
"FalconMambaForCausalLM": _HfExamplesInfo("tiiuae/falcon-mamba-7b-instruct"), # noqa: E501
"MiniCPMForCausalLM": _HfExamplesInfo("openbmb/MiniCPM-2B-sft-bf16",
trust_remote_code=True),

View File

@ -293,7 +293,8 @@ def _chunk_scan_fwd_kernel(
dA_cs_m_boundary = tl.load(
dA_cumsum_ptr +
(pid_m * BLOCK_SIZE_M + c_off - 1) * stride_dA_cs_csize,
mask=(pid_m * BLOCK_SIZE_M + c_off - 1) > -1,
mask=(((pid_m * BLOCK_SIZE_M + c_off - 1) > -1)
and ((pid_m * BLOCK_SIZE_M + c_off) < chunk_size)),
other=0.0).to(tl.float32)
if HAS_SEQ_IDX:
@ -463,7 +464,10 @@ def _seq_idx_to_chunk_indices_offsets(seq_idx, chunk_size: int):
p += (s % chunk_size > 0)
# get the dimensions
_s, _e = s // chunk_size + p, e // chunk_size + p + 1
# - the + 1 for _e is to shift the boundary by one chunk
# - this shifting is not needed if chunk_size divides e
_s, _e = s // chunk_size + p, e // chunk_size + p + (e % chunk_size
> 0)
# adjust inidces and offsets
chunk_indices[_s:_e] -= p

View File

@ -440,23 +440,6 @@ class BambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
# follow jamba
if self.scheduler_config is not None and \
not self.model_config.enforce_eager:
# for compilation
if self.scheduler_config.max_num_seqs > \
vllm_config.compilation_config.max_capture_size:
self.max_batch_size = \
vllm_config.compilation_config.max_capture_size
else:
self.max_batch_size = vllm_config.pad_for_cudagraph(
self.scheduler_config.max_num_seqs)
elif self.scheduler_config is not None:
# for eager just take the scheduler_config if avail
self.max_batch_size = self.scheduler_config.max_num_seqs
else:
self.max_batch_size = 8192 + 2
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
@ -474,8 +457,8 @@ class BambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
self.vllm_config.parallel_config, LayerBlockType.mamba)
self.mamba_cache = MambaCacheManager(
self.lm_head.weight.dtype, num_mamba_layers,
self.max_batch_size, *self._get_mamba_cache_shape())
self.vllm_config, self.lm_head.weight.dtype, num_mamba_layers,
*self._get_mamba_cache_shape())
mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, mamba_cache_params,

View File

@ -426,17 +426,6 @@ class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
if self.scheduler_config is not None and \
not self.model_config.enforce_eager:
if self.scheduler_config.max_num_seqs > \
vllm_config.compilation_config.max_capture_size:
self.max_batch_size = \
vllm_config.compilation_config.max_capture_size
else:
self.max_batch_size = vllm_config.pad_for_cudagraph(
self.scheduler_config.max_num_seqs)
else:
self.max_batch_size = 8192 + 2
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
@ -453,8 +442,8 @@ class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
num_mamba_layers = self.model_config.get_num_layers_by_block_type(
self.vllm_config.parallel_config, LayerBlockType.mamba)
self.mamba_cache = MambaCacheManager(
self.lm_head.weight.dtype, num_mamba_layers,
self.max_batch_size, *self._get_mamba_cache_shape())
self.vllm_config, self.lm_head.weight.dtype, num_mamba_layers,
*self._get_mamba_cache_shape())
mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)

View File

@ -166,14 +166,13 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree, SupportsPP):
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
self.scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, \
"Mamba does not support prefix caching"
super().__init__()
self.config = config
self.vllm_config = vllm_config
self.scheduler_config = scheduler_config
self.model_config = vllm_config.model_config
self.backbone = MambaModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "backbone"))
@ -202,17 +201,6 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree, SupportsPP):
self.make_empty_intermediate_tensors = (
self.backbone.make_empty_intermediate_tensors)
if self.scheduler_config is not None and \
not self.model_config.enforce_eager:
if self.scheduler_config.max_num_seqs > \
vllm_config.compilation_config.max_capture_size:
self.max_batch_size = \
vllm_config.compilation_config.max_capture_size
else:
self.max_batch_size = vllm_config.pad_for_cudagraph(
self.scheduler_config.max_num_seqs)
else:
self.max_batch_size = 8192 + 2
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.backbone.get_input_embeddings(input_ids)
@ -229,8 +217,8 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree, SupportsPP):
num_mamba_layers = self.model_config.get_num_layers_by_block_type(
self.vllm_config.parallel_config, LayerBlockType.mamba)
self.mamba_cache = MambaCacheManager(
self.lm_head.weight.dtype, num_mamba_layers,
self.max_batch_size, *self._get_mamba_cache_shape())
self.vllm_config, self.lm_head.weight.dtype, num_mamba_layers,
*self._get_mamba_cache_shape())
mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)

View File

@ -0,0 +1,320 @@
# SPDX-License-Identifier: Apache-2.0
"""PyTorch MAMBA2 model."""
from typing import Iterable, List, Optional, Set, Tuple
import torch
from torch import nn
from transformers import MambaConfig
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.config import VllmConfig
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_mixer2 import (
MambaMixer2, extra_groups_for_head_shards)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import (HasInnerState,
IsAttentionFree)
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
MambaCacheParams)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.utils import LayerBlockType
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
KVCache = Tuple[torch.Tensor, torch.Tensor]
class Mamba2DecoderLayer(nn.Module):
def __init__(self,
config: MambaConfig,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.mixer = MambaMixer2(hidden_size=config.hidden_size,
ssm_state_size=config.state_size,
conv_kernel_size=config.conv_kernel,
intermediate_size=getattr(
config, "intermediate_size",
config.expand * config.hidden_size),
use_conv_bias=config.use_conv_bias,
use_bias=config.use_bias,
n_groups=config.n_groups,
num_heads=config.num_heads,
head_dim=config.head_dim,
rms_norm_eps=config.layer_norm_epsilon,
activation=config.hidden_act,
chunk_size=config.chunk_size,
quant_config=quant_config)
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
mamba_cache_params: MambaCacheParams,
sequence_idx: Optional[torch.Tensor],
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.norm(hidden_states)
else:
hidden_states, residual = self.norm(hidden_states, residual)
hidden_states = self.mixer(hidden_states, attn_metadata,
mamba_cache_params, sequence_idx)
return hidden_states, residual
class Mamba2Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
is_lora_enabled = bool(lora_config)
assert not is_lora_enabled
self.config = config
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embeddings = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Mamba2DecoderLayer(config,
quant_config=quant_config),
prefix=f"{prefix}.layers")
self.norm_f = RMSNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
attn_metadata: AttentionMetadata,
mamba_cache_params: MambaCacheParams,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
# pass a sequence index tensor, that is required for
# proper continuous batching computation including
# chunked prefill
seq_idx = None
if attn_metadata.num_prefills > 0:
seq_idx = torch.zeros_like(input_ids, dtype=torch.int32)
for i, (srt, end) in enumerate(
zip(
attn_metadata.query_start_loc,
attn_metadata.query_start_loc[1:],
)):
seq_idx[srt:end] = i
seq_idx.unsqueeze_(0)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
attn_metadata=attn_metadata,
residual=residual,
mamba_cache_params=mamba_cache_params.at_layer_idx(
i - self.start_layer),
sequence_idx=seq_idx)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm_f(hidden_states, residual)
return hidden_states
class Mamba2ForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, \
"Mamba does not support prefix caching"
super().__init__()
self.config = config
self.vllm_config = vllm_config
self.scheduler_config = scheduler_config
self.model_config = vllm_config.model_config
self.backbone = Mamba2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "backbone"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
if config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(self.backbone.embeddings)
# Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.backbone.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.backbone.get_input_embeddings(input_ids)
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs):
if self.mamba_cache is None:
num_mamba_layers = self.model_config.get_num_layers_by_block_type(
self.vllm_config.parallel_config, LayerBlockType.mamba)
self.mamba_cache = MambaCacheManager(
self.vllm_config, self.lm_head.weight.dtype, num_mamba_layers,
*self._get_mamba_cache_shape())
mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)
hidden_states = self.backbone(input_ids, positions, attn_metadata,
mamba_cache_params, intermediate_tensors,
inputs_embeds)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.mamba_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
def _get_mamba_cache_shape(
self) -> Tuple[Tuple[int, int], Tuple[int, int]]:
world_size = get_tensor_model_parallel_world_size()
conv_state_shape, temporal_state_shape = None, None
intermediate_size = getattr(
self.config, "intermediate_size",
self.config.expand * self.config.hidden_size)
# if n_groups is not divisible by world_size, need to extend the shards
# to ensure all groups needed by a head is sharded along with it
n_groups = (
self.config.n_groups +
extra_groups_for_head_shards(self.config.n_groups, world_size))
# - heads and n_groups are TP-ed
conv_dim = (intermediate_size + 2 * n_groups * self.config.state_size)
conv_state_shape = (
divide(conv_dim, world_size),
self.config.conv_kernel - 1,
)
# These are not TP-ed as they depend on A, dt_bias, D
# - they are typically small
# e.g., (h_heads, d_head, d_state) = (128, 64, 128)
temporal_state_shape = (
divide(self.config.num_heads, world_size),
self.config.head_dim,
self.config.state_size,
)
return conv_state_shape, temporal_state_shape
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "A_log" in name:
name = name.replace("A_log", "A")
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params

View File

@ -1,11 +1,12 @@
# SPDX-License-Identifier: Apache-2.0
from dataclasses import dataclass
from typing import Dict, List
from typing import Dict, List, Tuple
import torch
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.config import VllmConfig
@dataclass
@ -22,8 +23,14 @@ class MambaCacheParams:
class MambaCacheManager:
def __init__(self, dtype, num_mamba_layers, max_batch_size,
conv_state_shape, temporal_state_shape):
def __init__(self, vllm_config: VllmConfig, dtype: torch.dtype,
num_mamba_layers: int, conv_state_shape: Tuple[int, int],
temporal_state_shape: Tuple[int, int]):
# Determine max batch size to set size of MambaCache
max_batch_size = vllm_config.scheduler_config.max_num_seqs
if not vllm_config.model_config.enforce_eager:
max_batch_size = vllm_config.pad_for_cudagraph(max_batch_size)
conv_state = torch.empty(size=(num_mamba_layers, max_batch_size) +
conv_state_shape,

View File

@ -71,6 +71,7 @@ _TEXT_GENERATION_MODELS = {
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MambaForCausalLM": ("mamba", "MambaForCausalLM"),
"FalconMambaForCausalLM": ("mamba", "MambaForCausalLM"),
"Mamba2ForCausalLM": ("mamba2", "Mamba2ForCausalLM"),
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
"MiniCPM3ForCausalLM": ("minicpm3", "MiniCPM3ForCausalLM"),
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),