Add GLM-4-0414 support (#16338)
Signed-off-by: lvfei.lv <lvfei.lv@alibaba-inc.com> Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com> Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Signed-off-by: yihong0618 <zouzou0208@gmail.com> Signed-off-by: Lu Fang <fanglu@fb.com> Signed-off-by: Ajay Vohra <ajayvohr@amazon.com> Signed-off-by: NickLucche <nlucches@redhat.com> Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com> Co-authored-by: Accelerator1996 <lvfei.lv@alibaba-inc.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk> Co-authored-by: Michael Goin <michael@neuralmagic.com> Co-authored-by: yihong <zouzou0208@gmail.com> Co-authored-by: Lucia Fang <116399278+luccafong@users.noreply.github.com> Co-authored-by: ajayvohra2005 <ajayvohr@amazon.com> Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com> Co-authored-by: Guillaume Calmettes <gcalmettes@scaleway.com>
This commit is contained in:
parent
a454748544
commit
1e44ffc3ff
@ -303,6 +303,11 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
* `THUDM/glm-4-9b-chat-hf`, etc.
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `Glm4ForCausalLM`
|
||||
* GLM-4-0414
|
||||
* `THUDM/GLM-4-32B-Chat-0414`, etc.
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `GPT2LMHeadModel`
|
||||
* GPT-2
|
||||
* `gpt2`, `gpt2-xl`, etc.
|
||||
|
@ -146,6 +146,11 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"Gemma3ForCausalLM": _HfExamplesInfo("google/gemma-3-1b-it",
|
||||
min_transformers_version="4.50"),
|
||||
"GlmForCausalLM": _HfExamplesInfo("THUDM/glm-4-9b-chat-hf"),
|
||||
"Glm4ForCausalLM": _HfExamplesInfo(
|
||||
"THUDM/GLM-4-32B-Chat-0414",
|
||||
is_available_online=False,
|
||||
min_transformers_version="4.52.dev0"
|
||||
),
|
||||
"GPT2LMHeadModel": _HfExamplesInfo("gpt2"),
|
||||
"GPTBigCodeForCausalLM": _HfExamplesInfo("bigcode/starcoder"),
|
||||
"GPTJForCausalLM": _HfExamplesInfo("EleutherAI/gpt-j-6b"),
|
||||
|
313
vllm/model_executor/models/glm4.py
Normal file
313
vllm/model_executor/models/glm4.py
Normal file
@ -0,0 +1,313 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# Copyright 2025 The Zhipu AI team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only GLM-4-0414 model compatible with HuggingFace weights."""
|
||||
from typing import Iterable, Optional, Set, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import Glm4Config
|
||||
|
||||
from vllm.attention import Attention, AttentionType
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .llama import LlamaMLP as Glm4MLP
|
||||
from .llama import LlamaModel
|
||||
from .utils import AutoWeightsLoader, PPMissingLayer, maybe_prefix
|
||||
|
||||
|
||||
class Glm4Attention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: Glm4Config,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
max_position: int = 4096 * 32,
|
||||
head_dim: Optional[int] = None,
|
||||
qkv_bias: bool = False,
|
||||
rope_theta: float = 10000,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
rope_scaling: Optional[Tuple] = None,
|
||||
prefix: str = "",
|
||||
attn_type: str = AttentionType.DECODER) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
partial_rotary_factor = getattr(config, "partial_rotary_factor", 0.5)
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = head_dim or hidden_size // self.total_num_heads
|
||||
self.rotary_dim = int(partial_rotary_factor * self.head_dim)
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=qkv_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.rotary_dim,
|
||||
max_position=max_position,
|
||||
base=self.rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
partial_rotary_factor=partial_rotary_factor,
|
||||
)
|
||||
self.attn = Attention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
attn_type=attn_type)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class Glm4DecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Glm4Config,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 1000000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
|
||||
self.self_attn = Glm4Attention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
qkv_bias=getattr(config, 'attention_bias', False),
|
||||
head_dim=getattr(config, 'head_dim', None),
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
rope_scaling=rope_scaling,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
attn_type=AttentionType.DECODER,
|
||||
)
|
||||
self.mlp = Glm4MLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_self_attn_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_mlp_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
)
|
||||
|
||||
hidden_states = self.post_self_attn_layernorm(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
hidden_states = self.post_attention_layernorm(hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = self.post_mlp_layernorm(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
ALL_DECODER_LAYER_TYPES = {
|
||||
"attention": Glm4DecoderLayer,
|
||||
}
|
||||
|
||||
|
||||
@support_torch_compile(
|
||||
dynamic_arg_dims={
|
||||
"input_ids": 0,
|
||||
"positions": -1,
|
||||
"intermediate_tensors": 0,
|
||||
"inputs_embeds": 0,
|
||||
})
|
||||
class Glm4Model(LlamaModel):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__(vllm_config=vllm_config,
|
||||
prefix=prefix,
|
||||
layer_type=Glm4DecoderLayer)
|
||||
|
||||
|
||||
class Glm4ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
|
||||
self.quant_config = quant_config
|
||||
self.model = Glm4Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
|
||||
if get_pp_group().is_last_rank:
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head = self.model.embed_tokens
|
||||
else:
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "lm_head"))
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.sampler = get_sampler()
|
||||
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
hidden_states = self.model(input_ids, positions, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str,
|
||||
torch.Tensor]]) -> Set[str]:
|
||||
loader = AutoWeightsLoader(
|
||||
self,
|
||||
skip_prefixes=(["lm_head."]
|
||||
if self.config.tie_word_embeddings else None),
|
||||
)
|
||||
return loader.load_weights(weights)
|
@ -58,6 +58,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
|
||||
"Gemma3ForCausalLM": ("gemma3", "Gemma3ForCausalLM"),
|
||||
"GlmForCausalLM": ("glm", "GlmForCausalLM"),
|
||||
"Glm4ForCausalLM": ("glm4", "Glm4ForCausalLM"),
|
||||
"GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"),
|
||||
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
|
||||
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
|
||||
|
Loading…
x
Reference in New Issue
Block a user