Bump up version to v0.3.0 (#2656)
This commit is contained in:
parent
3dad944485
commit
1af090b57d
@ -46,7 +46,7 @@ vLLM is fast with:
|
|||||||
- Efficient management of attention key and value memory with **PagedAttention**
|
- Efficient management of attention key and value memory with **PagedAttention**
|
||||||
- Continuous batching of incoming requests
|
- Continuous batching of incoming requests
|
||||||
- Fast model execution with CUDA/HIP graph
|
- Fast model execution with CUDA/HIP graph
|
||||||
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629)
|
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
|
||||||
- Optimized CUDA kernels
|
- Optimized CUDA kernels
|
||||||
|
|
||||||
vLLM is flexible and easy to use with:
|
vLLM is flexible and easy to use with:
|
||||||
@ -57,6 +57,8 @@ vLLM is flexible and easy to use with:
|
|||||||
- Streaming outputs
|
- Streaming outputs
|
||||||
- OpenAI-compatible API server
|
- OpenAI-compatible API server
|
||||||
- Support NVIDIA GPUs and AMD GPUs
|
- Support NVIDIA GPUs and AMD GPUs
|
||||||
|
- (Experimental) Prefix caching support
|
||||||
|
- (Experimental) Multi-lora support
|
||||||
|
|
||||||
vLLM seamlessly supports many Hugging Face models, including the following architectures:
|
vLLM seamlessly supports many Hugging Face models, including the following architectures:
|
||||||
|
|
||||||
|
@ -31,7 +31,7 @@ vLLM is fast with:
|
|||||||
* Efficient management of attention key and value memory with **PagedAttention**
|
* Efficient management of attention key and value memory with **PagedAttention**
|
||||||
* Continuous batching of incoming requests
|
* Continuous batching of incoming requests
|
||||||
* Fast model execution with CUDA/HIP graph
|
* Fast model execution with CUDA/HIP graph
|
||||||
* Quantization: `GPTQ <https://arxiv.org/abs/2210.17323>`_, `AWQ <https://arxiv.org/abs/2306.00978>`_, `SqueezeLLM <https://arxiv.org/abs/2306.07629>`_
|
* Quantization: `GPTQ <https://arxiv.org/abs/2210.17323>`_, `AWQ <https://arxiv.org/abs/2306.00978>`_, `SqueezeLLM <https://arxiv.org/abs/2306.07629>`_, FP8 KV Cache
|
||||||
* Optimized CUDA kernels
|
* Optimized CUDA kernels
|
||||||
|
|
||||||
vLLM is flexible and easy to use with:
|
vLLM is flexible and easy to use with:
|
||||||
@ -42,6 +42,8 @@ vLLM is flexible and easy to use with:
|
|||||||
* Streaming outputs
|
* Streaming outputs
|
||||||
* OpenAI-compatible API server
|
* OpenAI-compatible API server
|
||||||
* Support NVIDIA GPUs and AMD GPUs
|
* Support NVIDIA GPUs and AMD GPUs
|
||||||
|
* (Experimental) Prefix caching support
|
||||||
|
* (Experimental) Multi-lora support
|
||||||
|
|
||||||
For more information, check out the following:
|
For more information, check out the following:
|
||||||
|
|
||||||
|
@ -8,7 +8,7 @@ from vllm.entrypoints.llm import LLM
|
|||||||
from vllm.outputs import CompletionOutput, RequestOutput
|
from vllm.outputs import CompletionOutput, RequestOutput
|
||||||
from vllm.sampling_params import SamplingParams
|
from vllm.sampling_params import SamplingParams
|
||||||
|
|
||||||
__version__ = "0.2.7"
|
__version__ = "0.3.0"
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"LLM",
|
"LLM",
|
||||||
|
Loading…
x
Reference in New Issue
Block a user