[Doc] Reorganize Supported Models by Type (#6167)

This commit is contained in:
Roger Wang 2024-07-05 22:59:36 -07:00 committed by GitHub
parent bc96d5c330
commit 175c43eca4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 37 additions and 19 deletions

View File

@ -7,6 +7,8 @@ vLLM supports a variety of generative Transformer models in `HuggingFace Transfo
The following is the list of model architectures that are currently supported by vLLM.
Alongside each architecture, we include some popular models that use it.
Decoder-only Language Models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:widths: 25 25 50 5
:header-rows: 1
@ -95,14 +97,6 @@ Alongside each architecture, we include some popular models that use it.
- LLaMA, Llama 2, Meta Llama 3, Vicuna, Alpaca, Yi
- :code:`meta-llama/Meta-Llama-3-8B-Instruct`, :code:`meta-llama/Meta-Llama-3-70B-Instruct`, :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`01-ai/Yi-6B`, :code:`01-ai/Yi-34B`, etc.
- ✅︎
* - :code:`LlavaForConditionalGeneration`
- LLaVA-1.5
- :code:`llava-hf/llava-1.5-7b-hf`, :code:`llava-hf/llava-1.5-13b-hf`, etc.
-
* - :code:`LlavaNextForConditionalGeneration`
- LLaVA-NeXT
- :code:`llava-hf/llava-v1.6-mistral-7b-hf`, :code:`llava-hf/llava-v1.6-vicuna-7b-hf`, etc.
-
* - :code:`MiniCPMForCausalLM`
- MiniCPM
- :code:`openbmb/MiniCPM-2B-sft-bf16`, :code:`openbmb/MiniCPM-2B-dpo-bf16`, etc.
@ -143,10 +137,6 @@ Alongside each architecture, we include some popular models that use it.
- Phi-3-Small
- :code:`microsoft/Phi-3-small-8k-instruct`, :code:`microsoft/Phi-3-small-128k-instruct`, etc.
-
* - :code:`Phi3VForCausalLM`
- Phi-3-Vision
- :code:`microsoft/Phi-3-vision-128k-instruct`, etc.
-
* - :code:`QWenLMHeadModel`
- Qwen
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
@ -172,14 +162,40 @@ Alongside each architecture, we include some popular models that use it.
- :code:`xverse/XVERSE-7B-Chat`, :code:`xverse/XVERSE-13B-Chat`, :code:`xverse/XVERSE-65B-Chat`, etc.
-
If your model uses one of the above model architectures, you can seamlessly run your model with vLLM.
Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` for instructions on how to implement support for your model.
Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ project.
.. note::
Currently, the ROCm version of vLLM supports Mistral and Mixtral only for context lengths up to 4096.
.. _supported_vlms:
Vision Language Models
^^^^^^^^^^^^^^^^^^^^^^^
.. list-table::
:widths: 25 25 50 5
:header-rows: 1
* - Architecture
- Models
- Example HuggingFace Models
- :ref:`LoRA <lora>`
* - :code:`LlavaForConditionalGeneration`
- LLaVA-1.5
- :code:`llava-hf/llava-1.5-7b-hf`, :code:`llava-hf/llava-1.5-13b-hf`, etc.
-
* - :code:`LlavaNextForConditionalGeneration`
- LLaVA-NeXT
- :code:`llava-hf/llava-v1.6-mistral-7b-hf`, :code:`llava-hf/llava-v1.6-vicuna-7b-hf`, etc.
-
* - :code:`Phi3VForCausalLM`
- Phi-3-Vision
- :code:`microsoft/Phi-3-vision-128k-instruct`, etc.
-
If your model uses one of the above model architectures, you can seamlessly run your model with vLLM.
Otherwise, please refer to :ref:`Adding a New Model <adding_a_new_model>` and :ref:`Adding a New Multimodal Model <adding_a_new_multimodal_model>`
for instructions on how to implement support for your model.
Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-project/vllm/issues>`_ project.
.. tip::
The easiest way to check if your model is supported is to run the program below:
@ -210,8 +226,9 @@ Alternatively, you can raise an issue on our `GitHub <https://github.com/vllm-pr
output = llm.generate("Hello, my name is")
print(output)
Model Support Policy
---------------------
=====================
At vLLM, we are committed to facilitating the integration and support of third-party models within our ecosystem. Our approach is designed to balance the need for robustness and the practical limitations of supporting a wide range of models. Heres how we manage third-party model support:

View File

@ -3,7 +3,8 @@
Using VLMs
==========
vLLM provides experimental support for Vision Language Models (VLMs). This document shows you how to run and serve these models using vLLM.
vLLM provides experimental support for Vision Language Models (VLMs). See the :ref:`list of supported VLMs here <supported_vlms>`.
This document shows you how to run and serve these models using vLLM.
.. important::
We are actively iterating on VLM support. Expect breaking changes to VLM usage and development in upcoming releases without prior deprecation.