OpenAI Server refactoring (#2360)

This commit is contained in:
FlorianJoncour 2024-01-17 05:33:14 +00:00 committed by GitHub
parent e1957c6ebd
commit 14cc317ba4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 954 additions and 643 deletions

View File

@ -19,6 +19,9 @@ steps:
- label: Engine Test
command: pytest -v -s engine
- label: Entrypoints Test
command: pytest -v -s entrypoints
- label: Kernels Test
command: pytest -v -s kernels
soft_fail: true

View File

@ -16,3 +16,6 @@ pytest-asyncio
httpx
einops # required for MPT
flash_attn # required for HuggingFace's llama implementation
openai
requests
ray

View File

@ -1,12 +1,12 @@
from argparse import Namespace
from dataclasses import dataclass
import os
import pathlib
import pytest
from fastapi.testclient import TestClient
from vllm.entrypoints.openai.api_server import *
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
chatml_jinja_path = pathlib.Path(os.path.dirname(os.path.abspath(
__file__))).parent.parent / "examples/template_chatml.jinja"
@ -48,7 +48,6 @@ TEST_MESSAGES = [
'content': 'What is the capital of'
},
]
client = TestClient(app)
@dataclass
@ -56,13 +55,17 @@ class MockTokenizer:
chat_template = None
@dataclass
class MockServingChat:
tokenizer: MockTokenizer
def test_load_chat_template():
# Testing chatml template
mock_args = Namespace(chat_template=chatml_jinja_path)
tokenizer = MockTokenizer()
# Call the function with the mocked args
load_chat_template(mock_args, tokenizer)
mock_serving_chat = MockServingChat(tokenizer)
OpenAIServingChat._load_chat_template(mock_serving_chat,
chat_template=chatml_jinja_path)
template_content = tokenizer.chat_template
@ -76,11 +79,11 @@ def test_load_chat_template():
def test_no_load_chat_template():
# Testing chatml template
template = "../../examples/does_not_exist"
mock_args = Namespace(chat_template=template)
tokenizer = MockTokenizer()
# Call the function with the mocked args
load_chat_template(mock_args, tokenizer=tokenizer)
mock_serving_chat = MockServingChat(tokenizer)
OpenAIServingChat._load_chat_template(mock_serving_chat,
chat_template=template)
template_content = tokenizer.chat_template
# Test assertions
@ -97,9 +100,9 @@ async def test_get_gen_prompt(model, template, add_generation_prompt,
expected_output):
# Initialize the tokenizer
tokenizer = get_tokenizer(tokenizer_name=model)
mock_args = Namespace(chat_template=template)
load_chat_template(mock_args, tokenizer)
mock_serving_chat = MockServingChat(tokenizer)
OpenAIServingChat._load_chat_template(mock_serving_chat,
chat_template=template)
# Create a mock request object using keyword arguments
mock_request = ChatCompletionRequest(
@ -115,8 +118,3 @@ async def test_get_gen_prompt(model, template, add_generation_prompt,
# Test assertion
assert result == expected_output, f"The generated prompt does not match the expected output for model {model} and template {template}"
def test_health_endpoint():
response = client.get("/health")
assert response.status_code == 200

View File

@ -0,0 +1,193 @@
import time
import subprocess
import sys
import pytest
import requests
import ray # using Ray for overall ease of process management, parallel requests, and debugging.
import openai # use the official client for correctness check
MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" # any model with a chat template should work here
pytestmark = pytest.mark.asyncio
@ray.remote(num_gpus=1)
class ServerRunner:
def __init__(self, args):
self.proc = subprocess.Popen(
["python3", "-m", "vllm.entrypoints.openai.api_server"] + args,
stdout=sys.stdout,
stderr=sys.stderr,
)
self._wait_for_server()
def ready(self):
return True
def _wait_for_server(self):
# run health check
start = time.time()
while True:
try:
if requests.get(
"http://localhost:8000/health").status_code == 200:
break
except Exception as err:
if self.proc.poll() is not None:
raise RuntimeError("Server exited unexpectedly.") from err
time.sleep(0.5)
if time.time() - start > MAX_SERVER_START_WAIT_S:
raise RuntimeError(
"Server failed to start in time.") from err
def __del__(self):
if hasattr(self, "proc"):
self.proc.terminate()
@pytest.fixture(scope="session")
def server():
ray.init()
server_runner = ServerRunner.remote([
"--model",
MODEL_NAME,
"--dtype",
"bfloat16", # use half precision for speed and memory savings in CI environment
"--max-model-len",
"8192"
])
ray.get(server_runner.ready.remote())
yield server_runner
ray.shutdown()
@pytest.fixture(scope="session")
def client():
client = openai.AsyncOpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
yield client
async def test_single_completion(server, client: openai.AsyncOpenAI):
completion = await client.completions.create(model=MODEL_NAME,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 1
assert completion.choices[0].text is not None and len(
completion.choices[0].text) >= 5
assert completion.choices[0].finish_reason == "length"
assert completion.usage == openai.types.CompletionUsage(
completion_tokens=5, prompt_tokens=6, total_tokens=11)
async def test_single_chat_session(server, client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
)
assert chat_completion.id is not None
assert chat_completion.choices is not None and len(
chat_completion.choices) == 1
assert chat_completion.choices[0].message is not None
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
async def test_completion_streaming(server, client: openai.AsyncOpenAI):
prompt = "What is an LLM?"
single_completion = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=5,
temperature=0.0,
)
single_output = single_completion.choices[0].text
single_usage = single_completion.usage
stream = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
)
chunks = []
async for chunk in stream:
chunks.append(chunk.choices[0].text)
assert chunk.choices[0].finish_reason == "length"
assert chunk.usage == single_usage
assert "".join(chunks) == single_output
async def test_chat_streaming(server, client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
)
chunks = []
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
assert chunk.choices[0].finish_reason == stop_reason
assert "".join(chunks) == output
if __name__ == "__main__":
pytest.main([__file__])

View File

@ -1,19 +1,12 @@
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/serve/openai_api_server.py
import argparse
import asyncio
import codecs
import json
import time
from contextlib import asynccontextmanager
from http import HTTPStatus
from typing import AsyncGenerator, Dict, List, Optional, Tuple, Union
from aioprometheus import MetricsMiddleware
from aioprometheus.asgi.starlette import metrics
import fastapi
import uvicorn
from http import HTTPStatus
from fastapi import Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
@ -22,26 +15,16 @@ from fastapi.responses import JSONResponse, StreamingResponse, Response
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.engine.metrics import add_global_metrics_labels
from vllm.entrypoints.openai.protocol import (
CompletionRequest, CompletionResponse, CompletionResponseChoice,
CompletionResponseStreamChoice, CompletionStreamResponse,
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
LogProbs, ModelCard, ModelList, ModelPermission, UsageInfo)
from vllm.entrypoints.openai.protocol import CompletionRequest, ChatCompletionRequest, ErrorResponse
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.utils import random_uuid
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
TIMEOUT_KEEP_ALIVE = 5 # seconds
openai_serving_chat: OpenAIServingChat = None
openai_serving_completion: OpenAIServingCompletion = None
logger = init_logger(__name__)
served_model = None
engine_args = None
engine = None
response_role = None
@asynccontextmanager
@ -120,72 +103,10 @@ app.add_middleware(MetricsMiddleware) # Trace HTTP server metrics
app.add_route("/metrics", metrics) # Exposes HTTP metrics
def create_error_response(status_code: HTTPStatus,
message: str) -> JSONResponse:
return JSONResponse(ErrorResponse(message=message,
type="invalid_request_error").dict(),
status_code=status_code.value)
def load_chat_template(args, tokenizer):
if args.chat_template is not None:
try:
with open(args.chat_template, "r") as f:
chat_template = f.read()
except OSError:
# If opening a file fails, set chat template to be args to
# ensure we decode so our escape are interpreted correctly
chat_template = codecs.decode(args.chat_template, "unicode_escape")
tokenizer.chat_template = chat_template
logger.info(
f"Using supplied chat template:\n{tokenizer.chat_template}")
elif tokenizer.chat_template is not None:
logger.info(f"Using default chat template:\n{tokenizer.chat_template}")
else:
logger.warning("No chat template provided. Chat API will not work.")
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
return create_error_response(HTTPStatus.BAD_REQUEST, str(exc))
async def check_model(request) -> Optional[JSONResponse]:
if request.model == served_model:
return
ret = create_error_response(
HTTPStatus.NOT_FOUND,
f"The model `{request.model}` does not exist.",
)
return ret
async def check_length(
request: Union[ChatCompletionRequest, CompletionRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None
) -> Tuple[List[int], Optional[JSONResponse]]:
assert (not (prompt is None and prompt_ids is None)
and not (prompt is not None and prompt_ids is not None)
), "Either prompt or prompt_ids should be provided."
input_ids = prompt_ids if prompt_ids is not None else tokenizer(
prompt).input_ids
token_num = len(input_ids)
if request.max_tokens is None:
request.max_tokens = max_model_len - token_num
if token_num + request.max_tokens > max_model_len:
return input_ids, create_error_response(
HTTPStatus.BAD_REQUEST,
f"This model's maximum context length is {max_model_len} tokens. "
f"However, you requested {request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.",
)
else:
return input_ids, None
err = openai_serving_chat.create_error_response(message=str(exc))
return JSONResponse(err.dict(), status_code=HTTPStatus.BAD_REQUEST)
@app.get("/health")
@ -196,544 +117,31 @@ async def health() -> Response:
@app.get("/v1/models")
async def show_available_models():
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=served_model,
root=served_model,
permission=[ModelPermission()])
]
return ModelList(data=model_cards)
def create_logprobs(
token_ids: List[int],
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
if num_output_top_logprobs:
logprobs.top_logprobs = []
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is not None:
token_logprob = step_top_logprobs[token_id]
else:
token_logprob = None
token = tokenizer.convert_ids_to_tokens(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] +
last_token_len)
last_token_len = len(token)
if num_output_top_logprobs:
logprobs.top_logprobs.append({
tokenizer.convert_ids_to_tokens(i): p
for i, p in step_top_logprobs.items()
} if step_top_logprobs else None)
return logprobs
models = await openai_serving_chat.show_available_models()
return JSONResponse(content=models.dict())
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest,
raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following features:
- function_call (Users should implement this by themselves)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
return create_error_response(HTTPStatus.BAD_REQUEST,
"logit_bias is not currently supported")
try:
prompt = tokenizer.apply_chat_template(
conversation=request.messages,
tokenize=False,
add_generation_prompt=request.add_generation_prompt)
except Exception as e:
logger.error(f"Error in applying chat template from request: {str(e)}")
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
token_ids, error_check_ret = await check_length(request, prompt=prompt)
if error_check_ret is not None:
return error_check_ret
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
created_time = int(time.monotonic())
chunk_object_type = "chat.completion.chunk"
try:
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_params = SamplingParams(
n=request.n,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
top_p=request.top_p,
min_p=request.min_p,
stop=request.stop,
stop_token_ids=request.stop_token_ids,
max_tokens=request.max_tokens,
best_of=request.best_of,
top_k=request.top_k,
ignore_eos=request.ignore_eos,
use_beam_search=request.use_beam_search,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
except ValueError as e:
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
result_generator = engine.generate(prompt, sampling_params, request_id,
token_ids)
def get_role() -> str:
if request.add_generation_prompt:
return response_role
else:
return request.messages[-1]["role"]
async def completion_stream_generator() -> AsyncGenerator[str, None]:
# Send first response for each request.n (index) with the role
role = get_role()
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i, delta=DeltaMessage(role=role), finish_reason=None)
chunk = ChatCompletionStreamResponse(id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
# Send response to echo the input portion of the last message
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
if last_msg_content:
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=last_msg_content),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
# Send response for each token for each request.n (index)
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
finish_reason_sent = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
if finish_reason_sent[i]:
continue
if output.finish_reason is None:
# Send token-by-token response for each request.n
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
else:
# Send the finish response for each request.n only once
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=previous_num_tokens[i],
total_tokens=prompt_tokens + previous_num_tokens[i],
)
choice_data = ChatCompletionResponseStreamChoice(
index=i, delta=[], finish_reason=output.finish_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if final_usage is not None:
chunk.usage = final_usage
data = chunk.json(exclude_unset=True,
exclude_none=True,
ensure_ascii=False)
yield f"data: {data}\n\n"
finish_reason_sent[i] = True
# Send the final done message after all response.n are finished
yield "data: [DONE]\n\n"
async def completion_full_generator():
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return create_error_response(HTTPStatus.BAD_REQUEST,
"Client disconnected")
final_res = res
assert final_res is not None
choices = []
role = get_role()
for output in final_res.outputs:
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role=role, content=output.text),
finish_reason=output.finish_reason,
)
choices.append(choice_data)
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
for choice in choices:
full_message = last_msg_content + choice.message.content
choice.message.content = full_message
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
return response
# Streaming response
if request.stream:
return StreamingResponse(completion_stream_generator(),
generator = await openai_serving_chat.create_chat_completion(
request, raw_request)
if request.stream and not isinstance(generator, ErrorResponse):
return StreamingResponse(content=generator,
media_type="text/event-stream")
else:
return await completion_full_generator()
return JSONResponse(content=generator.dict())
@app.post("/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/completions/create
for the API specification. This API mimics the OpenAI Completion API.
NOTE: Currently we do not support the following features:
- suffix (the language models we currently support do not support
suffix)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
# OpenAI API supports echoing the prompt when max_tokens is 0.
echo_without_generation = request.echo and request.max_tokens == 0
if request.suffix is not None:
# The language models we currently support do not support suffix.
return create_error_response(HTTPStatus.BAD_REQUEST,
"suffix is not currently supported")
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
return create_error_response(HTTPStatus.BAD_REQUEST,
"logit_bias is not currently supported")
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
use_token_ids = False
if isinstance(request.prompt, list):
if len(request.prompt) == 0:
return create_error_response(HTTPStatus.BAD_REQUEST,
"please provide at least one prompt")
first_element = request.prompt[0]
if isinstance(first_element, int):
use_token_ids = True
prompt = request.prompt
elif isinstance(first_element, (str, list)):
# TODO: handles multiple prompt case in list[list[int]]
if len(request.prompt) > 1:
return create_error_response(
HTTPStatus.BAD_REQUEST,
"multiple prompts in a batch is not currently supported")
use_token_ids = not isinstance(first_element, str)
prompt = request.prompt[0]
else:
prompt = request.prompt
if use_token_ids:
_, error_check_ret = await check_length(request, prompt_ids=prompt)
else:
token_ids, error_check_ret = await check_length(request, prompt=prompt)
if error_check_ret is not None:
return error_check_ret
created_time = int(time.monotonic())
try:
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_params = SamplingParams(
n=request.n,
best_of=request.best_of,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
min_p=request.min_p,
stop=request.stop,
stop_token_ids=request.stop_token_ids,
ignore_eos=request.ignore_eos,
max_tokens=request.max_tokens
if not echo_without_generation else 1,
logprobs=request.logprobs,
use_beam_search=request.use_beam_search,
prompt_logprobs=request.logprobs if request.echo else None,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
except ValueError as e:
return create_error_response(HTTPStatus.BAD_REQUEST, str(e))
if use_token_ids:
result_generator = engine.generate(None,
sampling_params,
request_id,
prompt_token_ids=prompt)
else:
result_generator = engine.generate(prompt, sampling_params, request_id,
token_ids)
# Similar to the OpenAI API, when n != best_of, we do not stream the
# results. In addition, we do not stream the results when use beam search.
stream = (request.stream
and (request.best_of is None or request.n == request.best_of)
and not request.use_beam_search)
def create_stream_response_json(
index: int,
text: str,
logprobs: Optional[LogProbs] = None,
finish_reason: Optional[str] = None,
usage: Optional[UsageInfo] = None,
) -> str:
choice_data = CompletionResponseStreamChoice(
index=index,
text=text,
logprobs=logprobs,
finish_reason=finish_reason,
)
response = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[choice_data],
)
if usage is not None:
response.usage = usage
response_json = response.json(exclude_unset=True, ensure_ascii=False)
return response_json
async def completion_stream_generator() -> AsyncGenerator[str, None]:
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
has_echoed = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
delta_text = output.text[len(previous_texts[i]):]
token_ids = output.token_ids[previous_num_tokens[i]:]
if request.logprobs is not None:
top_logprobs = output.logprobs[previous_num_tokens[i]:]
else:
top_logprobs = None
offsets = len(previous_texts[i])
if request.echo and not has_echoed[i]:
if not echo_without_generation:
delta_text = res.prompt + delta_text
token_ids = res.prompt_token_ids + token_ids
if top_logprobs:
top_logprobs = res.prompt_logprobs + top_logprobs
else: # only just return the prompt
delta_text = res.prompt
token_ids = res.prompt_token_ids
if top_logprobs:
top_logprobs = res.prompt_logprobs
has_echoed[i] = True
if request.logprobs is not None:
logprobs = create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=offsets,
)
else:
logprobs = None
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
response_json = create_stream_response_json(
index=i,
text=delta_text,
logprobs=logprobs,
finish_reason=finish_reason,
)
yield f"data: {response_json}\n\n"
if output.finish_reason is not None:
logprobs = (LogProbs()
if request.logprobs is not None else None)
prompt_tokens = len(res.prompt_token_ids)
completion_tokens = len(output.token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = create_stream_response_json(
index=i,
text="",
logprobs=logprobs,
finish_reason=output.finish_reason,
usage=final_usage,
)
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
# Streaming response
if stream:
return StreamingResponse(completion_stream_generator(),
generator = await openai_serving_completion.create_completion(
request, raw_request)
if request.stream and not isinstance(generator, ErrorResponse):
return StreamingResponse(content=generator,
media_type="text/event-stream")
# Non-streaming response
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
return create_error_response(HTTPStatus.BAD_REQUEST,
"Client disconnected")
final_res = res
assert final_res is not None
choices = []
prompt_token_ids = final_res.prompt_token_ids
prompt_logprobs = final_res.prompt_logprobs
prompt_text = final_res.prompt
for output in final_res.outputs:
if request.logprobs is not None:
if not echo_without_generation:
token_ids = output.token_ids
top_logprobs = output.logprobs
if request.echo:
token_ids = prompt_token_ids + token_ids
top_logprobs = prompt_logprobs + top_logprobs
else:
token_ids = prompt_token_ids
top_logprobs = prompt_logprobs
logprobs = create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
if not echo_without_generation:
output_text = output.text
if request.echo:
output_text = prompt_text + output_text
else:
output_text = prompt_text
choice_data = CompletionResponseChoice(
index=output.index,
text=output_text,
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
if request.stream:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json = response.json(ensure_ascii=False)
async def fake_stream_generator() -> AsyncGenerator[str, None]:
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(fake_stream_generator(),
media_type="text/event-stream")
return response
else:
return JSONResponse(content=generator.dict())
if __name__ == "__main__":
@ -754,19 +162,12 @@ if __name__ == "__main__":
else:
served_model = args.model
response_role = args.response_role
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
engine_model_config = asyncio.run(engine.get_model_config())
max_model_len = engine_model_config.max_model_len
# A separate tokenizer to map token IDs to strings.
tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
trust_remote_code=engine_model_config.trust_remote_code)
load_chat_template(args, tokenizer)
openai_serving_chat = OpenAIServingChat(engine, served_model,
args.response_role,
args.chat_template)
openai_serving_completion = OpenAIServingCompletion(engine, served_model)
# Register labels for metrics
add_global_metrics_labels(model_name=engine_args.model)

View File

@ -0,0 +1,288 @@
import time
import codecs
from fastapi import Request
from typing import AsyncGenerator, AsyncIterator, Union
from vllm.logger import init_logger
from vllm.utils import random_uuid
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
UsageInfo)
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.entrypoints.openai.serving_engine import OpenAIServing
logger = init_logger(__name__)
class OpenAIServingChat(OpenAIServing):
def __init__(self,
engine: AsyncLLMEngine,
served_model: str,
response_role: str,
chat_template=None):
super().__init__(engine=engine, served_model=served_model)
self.response_role = response_role
self._load_chat_template(chat_template)
async def create_chat_completion(
self, request: ChatCompletionRequest, raw_request: Request
) -> Union[ErrorResponse, AsyncGenerator[str, None],
ChatCompletionResponse]:
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following features:
- function_call (Users should implement this by themselves)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
return self.create_error_response(
"logit_bias is not currently supported")
try:
prompt = self.tokenizer.apply_chat_template(
conversation=request.messages,
tokenize=False,
add_generation_prompt=request.add_generation_prompt)
except Exception as e:
logger.error(
f"Error in applying chat template from request: {str(e)}")
return self.create_error_response(str(e))
token_ids, error_check_ret = await self._check_length(request,
prompt=prompt)
if error_check_ret is not None:
return error_check_ret
request_id = f"cmpl-{random_uuid()}"
try:
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_params = SamplingParams(
n=request.n,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
top_p=request.top_p,
min_p=request.min_p,
stop=request.stop,
stop_token_ids=request.stop_token_ids,
max_tokens=request.max_tokens,
best_of=request.best_of,
top_k=request.top_k,
ignore_eos=request.ignore_eos,
use_beam_search=request.use_beam_search,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
except ValueError as e:
return self.create_error_response(str(e))
result_generator = self.engine.generate(prompt, sampling_params,
request_id, token_ids)
# Streaming response
if request.stream:
return self.chat_completion_stream_generator(
request, result_generator, request_id)
else:
return await self.chat_completion_full_generator(
request, raw_request, result_generator, request_id)
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
if request.add_generation_prompt:
return self.response_role
else:
return request.messages[-1].role
async def chat_completion_stream_generator(
self, request: ChatCompletionRequest,
result_generator: AsyncIterator[RequestOutput], request_id: str
) -> Union[ErrorResponse, AsyncGenerator[str, None]]:
model_name = request.model
created_time = int(time.monotonic())
chunk_object_type = "chat.completion.chunk"
# Send first response for each request.n (index) with the role
role = self.get_chat_request_role(request)
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i, delta=DeltaMessage(role=role), finish_reason=None)
chunk = ChatCompletionStreamResponse(id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
# Send response to echo the input portion of the last message
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
if last_msg_content:
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=last_msg_content),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
# Send response for each token for each request.n (index)
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
finish_reason_sent = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
if finish_reason_sent[i]:
continue
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
if output.finish_reason is None:
# Send token-by-token response for each request.n
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.json(exclude_unset=True, ensure_ascii=False)
yield f"data: {data}\n\n"
else:
# Send the finish response for each request.n only once
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=previous_num_tokens[i],
total_tokens=prompt_tokens + previous_num_tokens[i],
)
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
finish_reason=output.finish_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if final_usage is not None:
chunk.usage = final_usage
data = chunk.json(exclude_unset=True,
exclude_none=True,
ensure_ascii=False)
yield f"data: {data}\n\n"
finish_reason_sent[i] = True
# Send the final done message after all response.n are finished
yield "data: [DONE]\n\n"
async def chat_completion_full_generator(
self, request: ChatCompletionRequest, raw_request: Request,
result_generator: AsyncIterator[RequestOutput],
request_id: str) -> Union[ErrorResponse, ChatCompletionResponse]:
model_name = request.model
created_time = int(time.monotonic())
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await self.engine.abort(request_id)
return self.create_error_response("Client disconnected")
final_res = res
assert final_res is not None
choices = []
role = self.get_chat_request_role(request)
for output in final_res.outputs:
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role=role, content=output.text),
finish_reason=output.finish_reason,
)
choices.append(choice_data)
if request.echo:
last_msg_content = ""
if request.messages and isinstance(
request.messages, list) and request.messages[-1].get(
"content") and request.messages[-1].get(
"role") == role:
last_msg_content = request.messages[-1]["content"]
for choice in choices:
full_message = last_msg_content + choice.message.content
choice.message.content = full_message
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
return response
def _load_chat_template(self, chat_template):
if chat_template is not None:
try:
with open(chat_template, "r") as f:
self.tokenizer.chat_template = f.read()
except OSError:
# If opening a file fails, set chat template to be args to
# ensure we decode so our escape are interpreted correctly
self.tokenizer.chat_template = codecs.decode(
chat_template, "unicode_escape")
logger.info(
f"Using supplied chat template:\n{self.tokenizer.chat_template}"
)
elif self.tokenizer.chat_template is not None:
logger.info(
f"Using default chat template:\n{self.tokenizer.chat_template}"
)
else:
logger.warning(
"No chat template provided. Chat API will not work.")

View File

@ -0,0 +1,295 @@
import time
from fastapi import Request
from typing import AsyncGenerator, Optional
from vllm.logger import init_logger
from vllm.utils import random_uuid
from vllm.engine.async_llm_engine import AsyncLLMEngine
from .protocol import (CompletionRequest, CompletionResponse,
CompletionResponseChoice,
CompletionResponseStreamChoice,
CompletionStreamResponse, LogProbs, UsageInfo)
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.entrypoints.openai.serving_engine import OpenAIServing
logger = init_logger(__name__)
class OpenAIServingCompletion(OpenAIServing):
def __init__(self, engine: AsyncLLMEngine, served_model: str):
super().__init__(engine=engine, served_model=served_model)
async def create_completion(self, request: CompletionRequest,
raw_request: Request):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/completions/create
for the API specification. This API mimics the OpenAI Completion API.
NOTE: Currently we do not support the following features:
- suffix (the language models we currently support do not support
suffix)
- logit_bias (to be supported by vLLM engine)
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
# OpenAI API supports echoing the prompt when max_tokens is 0.
echo_without_generation = request.echo and request.max_tokens == 0
if request.suffix is not None:
# The language models we currently support do not support suffix.
return self.create_error_response(
"suffix is not currently supported")
if request.logit_bias is not None and len(request.logit_bias) > 0:
# TODO: support logit_bias in vLLM engine.
return self.create_error_response(
"logit_bias is not currently supported")
model_name = request.model
request_id = f"cmpl-{random_uuid()}"
use_token_ids = False
if isinstance(request.prompt, list):
if len(request.prompt) == 0:
return self.create_error_response(
"please provide at least one prompt")
first_element = request.prompt[0]
if isinstance(first_element, int):
use_token_ids = True
prompt = request.prompt
elif isinstance(first_element, (str, list)):
# TODO: handles multiple prompt case in list[list[int]]
if len(request.prompt) > 1:
return self.create_error_response(
"multiple prompts in a batch is not currently supported"
)
use_token_ids = not isinstance(first_element, str)
prompt = request.prompt[0]
else:
prompt = request.prompt
if use_token_ids:
_, error_check_ret = await self._check_length(request,
prompt_ids=prompt)
else:
token_ids, error_check_ret = await self._check_length(
request, prompt=prompt)
if error_check_ret is not None:
return error_check_ret
created_time = int(time.monotonic())
try:
spaces_between_special_tokens = request.spaces_between_special_tokens
sampling_params = SamplingParams(
n=request.n,
best_of=request.best_of,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
min_p=request.min_p,
stop=request.stop,
stop_token_ids=request.stop_token_ids,
ignore_eos=request.ignore_eos,
max_tokens=request.max_tokens
if not echo_without_generation else 1,
logprobs=request.logprobs,
use_beam_search=request.use_beam_search,
prompt_logprobs=request.logprobs if request.echo else None,
skip_special_tokens=request.skip_special_tokens,
spaces_between_special_tokens=spaces_between_special_tokens,
)
except ValueError as e:
return self.create_error_response(str(e))
if use_token_ids:
result_generator = self.engine.generate(None,
sampling_params,
request_id,
prompt_token_ids=prompt)
else:
result_generator = self.engine.generate(prompt, sampling_params,
request_id, token_ids)
# Similar to the OpenAI API, when n != best_of, we do not stream the
# results. In addition, we do not stream the results when use beam search.
stream = (request.stream
and (request.best_of is None or request.n == request.best_of)
and not request.use_beam_search)
def create_stream_response_json(
index: int,
text: str,
logprobs: Optional[LogProbs] = None,
finish_reason: Optional[str] = None,
usage: Optional[UsageInfo] = None,
) -> str:
choice_data = CompletionResponseStreamChoice(
index=index,
text=text,
logprobs=logprobs,
finish_reason=finish_reason,
)
response = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[choice_data],
)
if usage is not None:
response.usage = usage
response_json = response.json(exclude_unset=True,
ensure_ascii=False)
return response_json
async def completion_stream_generator() -> AsyncGenerator[str, None]:
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
has_echoed = [False] * request.n
async for res in result_generator:
res: RequestOutput
for output in res.outputs:
i = output.index
delta_text = output.text[len(previous_texts[i]):]
token_ids = output.token_ids[previous_num_tokens[i]:]
if request.logprobs is not None:
top_logprobs = output.logprobs[previous_num_tokens[i]:]
else:
top_logprobs = None
offsets = len(previous_texts[i])
if request.echo and not has_echoed[i]:
if not echo_without_generation:
delta_text = res.prompt + delta_text
token_ids = res.prompt_token_ids + token_ids
if top_logprobs:
top_logprobs = res.prompt_logprobs + top_logprobs
else: # only just return the prompt
delta_text = res.prompt
token_ids = res.prompt_token_ids
if top_logprobs:
top_logprobs = res.prompt_logprobs
has_echoed[i] = True
if request.logprobs is not None:
logprobs = self._create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=offsets,
)
else:
logprobs = None
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
finish_reason = output.finish_reason
response_json = create_stream_response_json(
index=i,
text=delta_text,
logprobs=logprobs,
finish_reason=finish_reason,
)
yield f"data: {response_json}\n\n"
if output.finish_reason is not None:
logprobs = (LogProbs()
if request.logprobs is not None else None)
prompt_tokens = len(res.prompt_token_ids)
completion_tokens = len(output.token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
response_json = create_stream_response_json(
index=i,
text="",
logprobs=logprobs,
finish_reason=output.finish_reason,
usage=final_usage,
)
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
# Streaming response
if stream:
return completion_stream_generator()
# Non-streaming response
final_res: RequestOutput = None
async for res in result_generator:
if await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await self.engine.abort(request_id)
return self.create_error_response("Client disconnected")
final_res = res
assert final_res is not None
choices = []
prompt_token_ids = final_res.prompt_token_ids
prompt_logprobs = final_res.prompt_logprobs
prompt_text = final_res.prompt
for output in final_res.outputs:
if request.logprobs is not None:
if not echo_without_generation:
token_ids = output.token_ids
top_logprobs = output.logprobs
if request.echo:
token_ids = prompt_token_ids + token_ids
top_logprobs = prompt_logprobs + top_logprobs
else:
token_ids = prompt_token_ids
top_logprobs = prompt_logprobs
logprobs = self._create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
if not echo_without_generation:
output_text = output.text
if request.echo:
output_text = prompt_text + output_text
else:
output_text = prompt_text
choice_data = CompletionResponseChoice(
index=output.index,
text=output_text,
logprobs=logprobs,
finish_reason=output.finish_reason,
)
choices.append(choice_data)
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
if request.stream:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json = response.json(ensure_ascii=False)
async def fake_stream_generator() -> AsyncGenerator[str, None]:
yield f"data: {response_json}\n\n"
yield "data: [DONE]\n\n"
return fake_stream_generator()
return response

View File

@ -0,0 +1,130 @@
import asyncio
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple, Union
from vllm.logger import init_logger
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (CompletionRequest,
ChatCompletionRequest,
ErrorResponse, LogProbs,
ModelCard, ModelList,
ModelPermission)
logger = init_logger(__name__)
class OpenAIServing:
def __init__(self, engine: AsyncLLMEngine, served_model: str):
self.engine = engine
self.served_model = served_model
self.max_model_len = 0
self.tokenizer = None
try:
event_loop = asyncio.get_running_loop()
except RuntimeError:
event_loop = None
if event_loop is not None and event_loop.is_running(
): # If the current is instanced by Ray Serve, there is already a running event loop
event_loop.create_task(self._post_init())
else: # When using single vLLM without engine_use_ray
asyncio.run(self._post_init())
async def _post_init(self):
engine_model_config = await self.engine.get_model_config()
self.max_model_len = engine_model_config.max_model_len
# A separate tokenizer to map token IDs to strings.
self.tokenizer = get_tokenizer(
engine_model_config.tokenizer,
tokenizer_mode=engine_model_config.tokenizer_mode,
trust_remote_code=engine_model_config.trust_remote_code)
async def show_available_models(self) -> ModelList:
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=self.served_model,
root=self.served_model,
permission=[ModelPermission()])
]
return ModelList(data=model_cards)
def _create_logprobs(
self,
token_ids: List[int],
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
num_output_top_logprobs: Optional[int] = None,
initial_text_offset: int = 0,
) -> LogProbs:
"""Create OpenAI-style logprobs."""
logprobs = LogProbs()
last_token_len = 0
if num_output_top_logprobs:
logprobs.top_logprobs = []
for i, token_id in enumerate(token_ids):
step_top_logprobs = top_logprobs[i]
if step_top_logprobs is not None:
token_logprob = step_top_logprobs[token_id]
else:
token_logprob = None
token = self.tokenizer.convert_ids_to_tokens(token_id)
logprobs.tokens.append(token)
logprobs.token_logprobs.append(token_logprob)
if len(logprobs.text_offset) == 0:
logprobs.text_offset.append(initial_text_offset)
else:
logprobs.text_offset.append(logprobs.text_offset[-1] +
last_token_len)
last_token_len = len(token)
if num_output_top_logprobs:
logprobs.top_logprobs.append({
self.tokenizer.convert_ids_to_tokens(i): p
for i, p in step_top_logprobs.items()
} if step_top_logprobs else None)
return logprobs
def create_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
return ErrorResponse(message=message,
type=err_type,
code=status_code.value)
async def _check_model(self, request) -> Optional[ErrorResponse]:
if request.model == self.served_model:
return
return self.create_error_response(
message=f"The model `{request.model}` does not exist.",
err_type="NotFoundError",
status_code=HTTPStatus.NOT_FOUND)
async def _check_length(
self,
request: Union[ChatCompletionRequest, CompletionRequest],
prompt: Optional[str] = None,
prompt_ids: Optional[List[int]] = None
) -> Tuple[List[int], Optional[ErrorResponse]]:
assert (not (prompt is None and prompt_ids is None)
and not (prompt is not None and prompt_ids is not None)
), "Either prompt or prompt_ids should be provided."
input_ids = prompt_ids if prompt_ids is not None else self.tokenizer(
prompt).input_ids
token_num = len(input_ids)
if request.max_tokens is None:
request.max_tokens = self.max_model_len - token_num
if token_num + request.max_tokens > self.max_model_len:
return input_ids, self.create_error_response(
f"This model's maximum context length is {self.max_model_len} tokens. "
f"However, you requested {request.max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{request.max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.", )
else:
return input_ids, None