[Feature] Consolidate performance benchmark datasets (#14036)
Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com> Signed-off-by: Roger Wang <ywang@roblox.com> Co-authored-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com> Co-authored-by: Roger Wang <ywang@roblox.com>
This commit is contained in:
parent
dc74613fa2
commit
1253b15774
667
benchmarks/benchmark_dataset.py
Normal file
667
benchmarks/benchmark_dataset.py
Normal file
@ -0,0 +1,667 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
"""
|
||||||
|
This module defines a framework for sampling benchmark requests from various
|
||||||
|
datasets. Each dataset subclass of BenchmarkDataset must implement sample
|
||||||
|
generation. Supported dataset types include:
|
||||||
|
- ShareGPT
|
||||||
|
- Random (synthetic)
|
||||||
|
- Sonnet
|
||||||
|
- BurstGPT
|
||||||
|
- HuggingFace
|
||||||
|
- VisionArena
|
||||||
|
|
||||||
|
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
|
||||||
|
SampleRequest instances, similar to the approach used in ShareGPT.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import base64
|
||||||
|
import io
|
||||||
|
import json
|
||||||
|
import random
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from collections.abc import Mapping
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from functools import cache
|
||||||
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from datasets import load_dataset
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import PreTrainedTokenizerBase
|
||||||
|
|
||||||
|
from vllm.lora.request import LoRARequest
|
||||||
|
from vllm.lora.utils import get_adapter_absolute_path
|
||||||
|
from vllm.multimodal import MultiModalDataDict
|
||||||
|
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# Data Classes
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class SampleRequest:
|
||||||
|
"""
|
||||||
|
Represents a single inference request for benchmarking.
|
||||||
|
"""
|
||||||
|
|
||||||
|
prompt: str
|
||||||
|
prompt_len: int
|
||||||
|
expected_output_len: int
|
||||||
|
multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
|
||||||
|
lora_request: Optional[LoRARequest] = None
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# Benchmark Dataset Base Class
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
class BenchmarkDataset(ABC):
|
||||||
|
DEFAULT_SEED = 0
|
||||||
|
|
||||||
|
# num_requests has default 1000 in both the benchmark_serving.py and
|
||||||
|
# benchmark_throughput.py
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dataset_path: Optional[str] = None,
|
||||||
|
random_seed: int = DEFAULT_SEED,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Initialize the BenchmarkDataset with an optional dataset path and random
|
||||||
|
seed. Args:
|
||||||
|
dataset_path (Optional[str]): Path to the dataset. If None, it
|
||||||
|
indicates that a default or random dataset might be used.
|
||||||
|
random_seed (int): Seed value for reproducible shuffling or
|
||||||
|
sampling. Defaults to DEFAULT_SEED.
|
||||||
|
"""
|
||||||
|
self.dataset_path = dataset_path
|
||||||
|
# Set the random seed, ensuring that a None value is replaced with the
|
||||||
|
# default seed.
|
||||||
|
self.random_seed = (random_seed
|
||||||
|
if random_seed is not None else self.DEFAULT_SEED)
|
||||||
|
self.data = None
|
||||||
|
|
||||||
|
def load_data(self) -> None:
|
||||||
|
"""
|
||||||
|
Load data from the dataset path into self.data.
|
||||||
|
|
||||||
|
This method must be overridden by subclasses since the method to load
|
||||||
|
data will vary depending on the dataset format and source.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
NotImplementedError: If a subclass does not implement this method.
|
||||||
|
"""
|
||||||
|
# TODO (jenniferzhao): add support for downloading data
|
||||||
|
raise NotImplementedError(
|
||||||
|
"load_data must be implemented in subclasses.")
|
||||||
|
|
||||||
|
def get_random_lora_request(
|
||||||
|
self,
|
||||||
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
|
max_loras: Optional[int] = None,
|
||||||
|
lora_path: Optional[str] = None,
|
||||||
|
) -> tuple[Optional[LoRARequest], AnyTokenizer]:
|
||||||
|
"""
|
||||||
|
Optionally select a random LoRA request and return its associated
|
||||||
|
tokenizer.
|
||||||
|
|
||||||
|
This method is used when LoRA parameters are provided. It randomly
|
||||||
|
selects a LoRA based on max_loras and retrieves a cached tokenizer for
|
||||||
|
that LoRA if available. Otherwise, it returns the base tokenizer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
|
||||||
|
LoRA is selected. max_loras (Optional[int]): The maximum number of
|
||||||
|
LoRAs available. If None, LoRA is not used. lora_path
|
||||||
|
(Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
|
||||||
|
is not used.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
|
||||||
|
element is a LoRARequest (or None if not applicable) and the second
|
||||||
|
element is the tokenizer associated with the LoRA request (or the
|
||||||
|
base tokenizer).
|
||||||
|
"""
|
||||||
|
if max_loras is None or lora_path is None:
|
||||||
|
return None, tokenizer
|
||||||
|
|
||||||
|
# Generate a random LoRA ID in the range [1, max_loras].
|
||||||
|
lora_id = random.randint(1, max_loras)
|
||||||
|
lora_request = LoRARequest(
|
||||||
|
lora_name=str(lora_id),
|
||||||
|
lora_int_id=lora_id,
|
||||||
|
lora_path=lora_path_on_disk(lora_path),
|
||||||
|
)
|
||||||
|
if lora_id not in lora_tokenizer_cache:
|
||||||
|
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
|
||||||
|
# Return lora_request and the cached tokenizer if available; otherwise,
|
||||||
|
# return the base tokenizer
|
||||||
|
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def sample(self, tokenizer: PreTrainedTokenizerBase,
|
||||||
|
num_requests: int) -> list[SampleRequest]:
|
||||||
|
"""
|
||||||
|
Abstract method to generate sample requests from the dataset.
|
||||||
|
|
||||||
|
Subclasses must override this method to implement dataset-specific logic
|
||||||
|
for generating a list of SampleRequest objects.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
|
||||||
|
for processing the dataset's text.
|
||||||
|
num_requests (int): The number of sample requests to generate.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list[SampleRequest]: A list of sample requests generated from the
|
||||||
|
dataset.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("sample must be implemented in subclasses.")
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# Utility Functions and Global Caches
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
def is_valid_sequence(
|
||||||
|
prompt_len: int,
|
||||||
|
output_len: int,
|
||||||
|
min_len: int = 4,
|
||||||
|
max_prompt_len: int = 1024,
|
||||||
|
max_total_len: int = 2048,
|
||||||
|
skip_min_output_len_check: bool = False,
|
||||||
|
) -> bool:
|
||||||
|
"""
|
||||||
|
Validate a sequence based on prompt and output lengths.
|
||||||
|
|
||||||
|
Default pruning criteria are copied from the original `sample_hf_requests`
|
||||||
|
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
|
||||||
|
from `sample_requests` in benchmark_throughput.py.
|
||||||
|
"""
|
||||||
|
# Check for invalid conditions
|
||||||
|
prompt_too_short = prompt_len < min_len
|
||||||
|
output_too_short = (not skip_min_output_len_check) and (output_len
|
||||||
|
< min_len)
|
||||||
|
prompt_too_long = prompt_len > max_prompt_len
|
||||||
|
combined_too_long = (prompt_len + output_len) > max_total_len
|
||||||
|
|
||||||
|
# Return True if none of the invalid conditions are met
|
||||||
|
return not (prompt_too_short or output_too_short or prompt_too_long
|
||||||
|
or combined_too_long)
|
||||||
|
|
||||||
|
|
||||||
|
@cache
|
||||||
|
def lora_path_on_disk(lora_path: str) -> str:
|
||||||
|
return get_adapter_absolute_path(lora_path)
|
||||||
|
|
||||||
|
|
||||||
|
# Global cache for LoRA tokenizers.
|
||||||
|
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
|
||||||
|
|
||||||
|
|
||||||
|
def process_image(image: Any) -> Mapping[str, Any]:
|
||||||
|
"""
|
||||||
|
Process a single image input and return a multimedia content dictionary.
|
||||||
|
|
||||||
|
For a PIL.Image.Image input:
|
||||||
|
- Converts the image to RGB.
|
||||||
|
- Saves the image as a JPEG in-memory.
|
||||||
|
- Encodes the JPEG data as a base64 string.
|
||||||
|
- Returns a dictionary with the image as a base64 data URL.
|
||||||
|
|
||||||
|
For a string input:
|
||||||
|
- Treats the string as a URL or file path.
|
||||||
|
- Prepends "file://" if the string doesn't start with "http://" or
|
||||||
|
"file://".
|
||||||
|
- Returns a dictionary with the image URL.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the input is neither a PIL.Image.Image nor a string.
|
||||||
|
"""
|
||||||
|
if isinstance(image, Image.Image):
|
||||||
|
image = image.convert("RGB")
|
||||||
|
with io.BytesIO() as image_data:
|
||||||
|
image.save(image_data, format="JPEG")
|
||||||
|
image_base64 = base64.b64encode(
|
||||||
|
image_data.getvalue()).decode("utf-8")
|
||||||
|
return {
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
if isinstance(image, str):
|
||||||
|
image_url = (image if image.startswith(
|
||||||
|
("http://", "file://")) else f"file://{image}")
|
||||||
|
return {"type": "image_url", "image_url": {"url": image_url}}
|
||||||
|
|
||||||
|
raise ValueError(
|
||||||
|
f"Invalid image input {image}. Must be a PIL.Image.Image or str.")
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# Random Dataset Implementation (Synthetic Data)
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
class RandomDataset(BenchmarkDataset):
|
||||||
|
# Default values copied from benchmark_serving.py for the random dataset.
|
||||||
|
DEFAULT_PREFIX_LEN = 0
|
||||||
|
DEFAULT_RANGE_RATIO = 1.0
|
||||||
|
DEFAULT_INPUT_LEN = 1024
|
||||||
|
DEFAULT_OUTPUT_LEN = 128
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
**kwargs,
|
||||||
|
) -> None:
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
|
def sample(self,
|
||||||
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
|
num_requests: int,
|
||||||
|
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||||
|
range_ratio: float = DEFAULT_RANGE_RATIO,
|
||||||
|
input_len: int = DEFAULT_INPUT_LEN,
|
||||||
|
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||||
|
**kwargs) -> list[SampleRequest]:
|
||||||
|
|
||||||
|
vocab_size = tokenizer.vocab_size
|
||||||
|
|
||||||
|
prefix_token_ids = (np.random.randint(
|
||||||
|
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
|
||||||
|
|
||||||
|
input_low = int(input_len * range_ratio)
|
||||||
|
output_low = int(output_len * range_ratio)
|
||||||
|
|
||||||
|
input_lens = np.random.randint(input_low,
|
||||||
|
input_len + 1,
|
||||||
|
size=num_requests)
|
||||||
|
output_lens = np.random.randint(output_low,
|
||||||
|
output_len + 1,
|
||||||
|
size=num_requests)
|
||||||
|
offsets = np.random.randint(0, vocab_size, size=num_requests)
|
||||||
|
|
||||||
|
requests = []
|
||||||
|
for i in range(num_requests):
|
||||||
|
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
|
||||||
|
vocab_size).tolist()
|
||||||
|
token_sequence = prefix_token_ids + inner_seq
|
||||||
|
prompt = tokenizer.decode(token_sequence)
|
||||||
|
total_input_len = prefix_len + int(input_lens[i])
|
||||||
|
requests.append(
|
||||||
|
SampleRequest(
|
||||||
|
prompt=prompt,
|
||||||
|
prompt_len=total_input_len,
|
||||||
|
expected_output_len=int(output_lens[i]),
|
||||||
|
))
|
||||||
|
return requests
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# ShareGPT Dataset Implementation
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
class ShareGPTDataset(BenchmarkDataset):
|
||||||
|
"""
|
||||||
|
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
||||||
|
sample requests based on conversation turns.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs) -> None:
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.load_data()
|
||||||
|
|
||||||
|
def load_data(self) -> None:
|
||||||
|
if self.dataset_path is None:
|
||||||
|
raise ValueError("dataset_path must be provided for loading data.")
|
||||||
|
|
||||||
|
with open(self.dataset_path, encoding="utf-8") as f:
|
||||||
|
self.data = json.load(f)
|
||||||
|
# Filter entries with at least two conversation turns.
|
||||||
|
self.data = [
|
||||||
|
entry for entry in self.data
|
||||||
|
if "conversations" in entry and len(entry["conversations"]) >= 2
|
||||||
|
]
|
||||||
|
random.seed(self.random_seed)
|
||||||
|
random.shuffle(self.data)
|
||||||
|
|
||||||
|
def sample(self,
|
||||||
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
|
num_requests: int,
|
||||||
|
lora_path: Optional[str] = None,
|
||||||
|
max_loras: Optional[int] = None,
|
||||||
|
output_len: Optional[int] = None,
|
||||||
|
**kwargs) -> list:
|
||||||
|
samples: list = []
|
||||||
|
for entry in self.data:
|
||||||
|
if len(samples) >= num_requests:
|
||||||
|
break
|
||||||
|
prompt, completion = entry["conversations"][0]["value"],\
|
||||||
|
entry["conversations"][1]["value"]
|
||||||
|
|
||||||
|
lora_request, tokenizer = self.get_random_lora_request(
|
||||||
|
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||||
|
prompt_ids = tokenizer(prompt).input_ids
|
||||||
|
completion_ids = tokenizer(completion).input_ids
|
||||||
|
prompt_len = len(prompt_ids)
|
||||||
|
new_output_len = (len(completion_ids)
|
||||||
|
if output_len is None else output_len)
|
||||||
|
if not is_valid_sequence(prompt_len,
|
||||||
|
new_output_len,
|
||||||
|
skip_min_output_len_check=output_len
|
||||||
|
is not None):
|
||||||
|
continue
|
||||||
|
samples.append(
|
||||||
|
SampleRequest(
|
||||||
|
prompt=prompt,
|
||||||
|
prompt_len=prompt_len,
|
||||||
|
expected_output_len=new_output_len,
|
||||||
|
lora_request=lora_request,
|
||||||
|
))
|
||||||
|
return samples
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# Sonnet Dataset Implementation
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
class SonnetDataset(BenchmarkDataset):
|
||||||
|
"""
|
||||||
|
Simplified implementation of the Sonnet dataset. Loads poem lines from a
|
||||||
|
text file and generates sample requests. Default values here copied from
|
||||||
|
`benchmark_serving.py` for the sonnet dataset.
|
||||||
|
"""
|
||||||
|
|
||||||
|
DEFAULT_PREFIX_LEN = 200
|
||||||
|
DEFAULT_INPUT_LEN = 550
|
||||||
|
DEFAULT_OUTPUT_LEN = 150
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
**kwargs,
|
||||||
|
) -> None:
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.load_data()
|
||||||
|
|
||||||
|
def load_data(self) -> None:
|
||||||
|
if not self.dataset_path:
|
||||||
|
raise ValueError("dataset_path must be provided.")
|
||||||
|
with open(self.dataset_path, encoding="utf-8") as f:
|
||||||
|
self.data = f.readlines()
|
||||||
|
|
||||||
|
def sample(self,
|
||||||
|
tokenizer,
|
||||||
|
num_requests: int,
|
||||||
|
prefix_len: int = DEFAULT_PREFIX_LEN,
|
||||||
|
input_len: int = DEFAULT_INPUT_LEN,
|
||||||
|
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||||
|
return_prompt_formatted: bool = False,
|
||||||
|
**kwargs) -> list:
|
||||||
|
# Calculate average token length for a poem line.
|
||||||
|
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
|
||||||
|
avg_len = sum(len(tokens)
|
||||||
|
for tokens in \
|
||||||
|
tokenized_lines) / len(tokenized_lines)
|
||||||
|
|
||||||
|
# Build the base prompt.
|
||||||
|
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
||||||
|
base_msg = [{"role": "user", "content": base_prompt}]
|
||||||
|
base_fmt = tokenizer.apply_chat_template(base_msg,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
tokenize=False)
|
||||||
|
base_offset = len(tokenizer(base_fmt).input_ids)
|
||||||
|
if input_len <= base_offset:
|
||||||
|
raise ValueError(
|
||||||
|
f"'input_len' must be higher than the base prompt length "
|
||||||
|
f"({base_offset}).")
|
||||||
|
|
||||||
|
# Determine how many poem lines to use.
|
||||||
|
num_input_lines = round((input_len - base_offset) / avg_len)
|
||||||
|
num_prefix_lines = round((prefix_len - base_offset) / avg_len)
|
||||||
|
prefix_lines = self.data[:num_prefix_lines]
|
||||||
|
|
||||||
|
samples = []
|
||||||
|
for _ in range(num_requests):
|
||||||
|
extra_lines = random.choices(self.data,
|
||||||
|
k=num_input_lines - num_prefix_lines)
|
||||||
|
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
|
||||||
|
msg = [{"role": "user", "content": prompt}]
|
||||||
|
prompt_formatted = tokenizer.apply_chat_template(
|
||||||
|
msg, add_generation_prompt=True, tokenize=False)
|
||||||
|
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
||||||
|
samples.append(
|
||||||
|
SampleRequest(
|
||||||
|
prompt=prompt_formatted
|
||||||
|
if return_prompt_formatted else prompt,
|
||||||
|
prompt_len=prompt_len,
|
||||||
|
expected_output_len=output_len,
|
||||||
|
))
|
||||||
|
return samples
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# BurstGPT Dataset Implementation
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
class BurstGPTDataset(BenchmarkDataset):
|
||||||
|
"""
|
||||||
|
Implements the BurstGPT dataset. Loads data from a CSV file and generates
|
||||||
|
sample requests based on synthetic prompt generation. Only rows with Model
|
||||||
|
"GPT-4" and positive response tokens are used.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs) -> None:
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.load_data()
|
||||||
|
|
||||||
|
def load_data(self, ):
|
||||||
|
if self.dataset_path is None:
|
||||||
|
raise ValueError("dataset_path must be provided for loading data.")
|
||||||
|
|
||||||
|
df = pd.read_csv(self.dataset_path)
|
||||||
|
# Filter to keep only GPT-4 rows.
|
||||||
|
gpt4_df = df[df["Model"] == "GPT-4"]
|
||||||
|
# Remove failed requests (where Response tokens is 0 or less).
|
||||||
|
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
|
||||||
|
# Sample the desired number of rows.
|
||||||
|
self.data = gpt4_df
|
||||||
|
|
||||||
|
def _sample_loaded_data(self, num_requests: int) -> list:
|
||||||
|
if num_requests <= len(self.data):
|
||||||
|
data = self.data.sample(n=num_requests,
|
||||||
|
random_state=self.random_seed)
|
||||||
|
else:
|
||||||
|
data = self.data.sample(
|
||||||
|
n=num_requests,
|
||||||
|
random_state=self.random_seed,
|
||||||
|
replace=True,
|
||||||
|
)
|
||||||
|
# Convert the dataframe to a list of lists.
|
||||||
|
return data.values.tolist()
|
||||||
|
|
||||||
|
def sample(self,
|
||||||
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
|
num_requests: int,
|
||||||
|
max_loras: Optional[int] = None,
|
||||||
|
lora_path: Optional[str] = None,
|
||||||
|
**kwargs) -> list[SampleRequest]:
|
||||||
|
samples = []
|
||||||
|
data = self._sample_loaded_data(num_requests=num_requests)
|
||||||
|
for i in range(num_requests):
|
||||||
|
input_len = int(data[i][2])
|
||||||
|
output_len = int(data[i][3])
|
||||||
|
lora_req, tokenizer = self.get_random_lora_request(
|
||||||
|
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
||||||
|
vocab_size = tokenizer.vocab_size
|
||||||
|
# Generate a synthetic prompt: a list of token IDs computed as (i +
|
||||||
|
# j) modulo vocab_size.
|
||||||
|
token_ids = [(i + j) % vocab_size for j in range(input_len)]
|
||||||
|
prompt = tokenizer.decode(token_ids)
|
||||||
|
samples.append(
|
||||||
|
SampleRequest(
|
||||||
|
prompt=prompt,
|
||||||
|
prompt_len=input_len,
|
||||||
|
expected_output_len=output_len,
|
||||||
|
lora_request=lora_req,
|
||||||
|
))
|
||||||
|
return samples
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# HuggingFace Dataset Implementation
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
class HuggingFaceDataset(BenchmarkDataset):
|
||||||
|
"""
|
||||||
|
Dataset class for processing a HuggingFace dataset with conversation data
|
||||||
|
and optional images.
|
||||||
|
"""
|
||||||
|
DEFAULT_NUM_REQUESTS = 1000
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dataset_split: str,
|
||||||
|
dataset_subset: Optional[str] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> None:
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.dataset_split = dataset_split
|
||||||
|
self.dataset_subset = dataset_subset
|
||||||
|
|
||||||
|
self.load_data()
|
||||||
|
|
||||||
|
def load_data(self) -> None:
|
||||||
|
if not self.dataset_path:
|
||||||
|
raise ValueError("dataset_path must be provided for loading data.")
|
||||||
|
|
||||||
|
self.data = load_dataset(
|
||||||
|
self.dataset_path,
|
||||||
|
name=self.dataset_subset,
|
||||||
|
split=self.dataset_split,
|
||||||
|
streaming=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
if "conversations" not in self.data.features:
|
||||||
|
raise ValueError("HF Dataset must have a 'conversations' column.")
|
||||||
|
|
||||||
|
# Shuffle and filter examples with at least 2 conversations.
|
||||||
|
self.data = self.data.shuffle(seed=self.random_seed).filter(
|
||||||
|
lambda x: len(x["conversations"]) >= 2)
|
||||||
|
|
||||||
|
def sample(self,
|
||||||
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
|
num_requests: int,
|
||||||
|
lora_path: Optional[str] = None,
|
||||||
|
max_loras: Optional[int] = None,
|
||||||
|
output_len: Optional[int] = None,
|
||||||
|
**kwargs) -> list:
|
||||||
|
sampled_requests = []
|
||||||
|
dynamic_output = output_len is None
|
||||||
|
|
||||||
|
for item in self.data:
|
||||||
|
if len(sampled_requests) >= num_requests:
|
||||||
|
break
|
||||||
|
|
||||||
|
conv = item["conversations"]
|
||||||
|
prompt, completion = conv[0]["value"], conv[1]["value"]
|
||||||
|
|
||||||
|
lora_request, tokenizer = self.get_random_lora_request(
|
||||||
|
tokenizer, lora_path=lora_path, max_loras=max_loras)
|
||||||
|
|
||||||
|
prompt_ids = tokenizer(prompt).input_ids
|
||||||
|
completion_ids = tokenizer(completion).input_ids
|
||||||
|
prompt_len = len(prompt_ids)
|
||||||
|
completion_len = len(completion_ids)
|
||||||
|
output_len = completion_len if dynamic_output else output_len
|
||||||
|
assert isinstance(output_len, int) and output_len > 0
|
||||||
|
if dynamic_output and not is_valid_sequence(
|
||||||
|
prompt_len, completion_len):
|
||||||
|
continue
|
||||||
|
|
||||||
|
mm_content = process_image(
|
||||||
|
item["image"]) if "image" in item else None
|
||||||
|
sampled_requests.append(
|
||||||
|
SampleRequest(
|
||||||
|
prompt=prompt,
|
||||||
|
prompt_len=prompt_len,
|
||||||
|
expected_output_len=output_len,
|
||||||
|
multi_modal_data=mm_content,
|
||||||
|
lora_request=lora_request,
|
||||||
|
))
|
||||||
|
return sampled_requests
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# Vision Arena Dataset Implementation
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
class VisionArenaDataset(BenchmarkDataset):
|
||||||
|
"""
|
||||||
|
Vision Arena Dataset.
|
||||||
|
"""
|
||||||
|
|
||||||
|
DEFAULT_OUTPUT_LEN = 128
|
||||||
|
DEFAULT_NUM_REQUESTS = 1000
|
||||||
|
VISION_ARENA_DATASET_PATH = "lmarena-ai/vision-arena-bench-v0.1"
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dataset_split: str,
|
||||||
|
dataset_subset: Optional[str] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> None:
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.dataset_split = dataset_split
|
||||||
|
self.dataset_subset = dataset_subset
|
||||||
|
|
||||||
|
if self.dataset_path != self.VISION_ARENA_DATASET_PATH:
|
||||||
|
raise ValueError(f"Only support Vision Arena dataset.\
|
||||||
|
This data path {self.dataset_path} is not valid.")
|
||||||
|
if self.dataset_subset is None and self.dataset_split != "train":
|
||||||
|
raise ValueError("Dataset split must be 'train'.")
|
||||||
|
|
||||||
|
self.load_data()
|
||||||
|
|
||||||
|
def load_data(self) -> None:
|
||||||
|
dataset = load_dataset(
|
||||||
|
self.dataset_path,
|
||||||
|
name=self.dataset_subset,
|
||||||
|
split=self.dataset_split,
|
||||||
|
streaming=True,
|
||||||
|
)
|
||||||
|
self.data = dataset.shuffle(seed=self.random_seed)
|
||||||
|
|
||||||
|
def sample(self,
|
||||||
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
|
num_requests: int,
|
||||||
|
output_len: int = DEFAULT_OUTPUT_LEN,
|
||||||
|
**kwargs) -> list:
|
||||||
|
# TODO (jenniferzhao): Add support for offline benchmark sampling
|
||||||
|
output_len = (output_len
|
||||||
|
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
||||||
|
sampled_requests = []
|
||||||
|
for item in self.data:
|
||||||
|
if len(sampled_requests) >= num_requests:
|
||||||
|
break
|
||||||
|
prompt = item["turns"][0][0]["content"]
|
||||||
|
prompt_len = len(tokenizer(prompt).input_ids)
|
||||||
|
mm_content = process_image(item["images"][0])
|
||||||
|
sampled_requests.append(
|
||||||
|
SampleRequest(
|
||||||
|
prompt=prompt,
|
||||||
|
prompt_len=prompt_len,
|
||||||
|
expected_output_len=output_len,
|
||||||
|
multi_modal_data=mm_content,
|
||||||
|
))
|
||||||
|
return sampled_requests
|
@ -25,25 +25,20 @@ On the client side, run:
|
|||||||
"""
|
"""
|
||||||
import argparse
|
import argparse
|
||||||
import asyncio
|
import asyncio
|
||||||
import base64
|
|
||||||
import gc
|
import gc
|
||||||
import io
|
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
import warnings
|
import warnings
|
||||||
from collections.abc import AsyncGenerator, Collection
|
from collections.abc import AsyncGenerator, Iterable
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Any, Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
|
||||||
RequestFuncOutput)
|
RequestFuncOutput)
|
||||||
from datasets import load_dataset
|
|
||||||
from PIL.Image import Image
|
|
||||||
from tqdm.asyncio import tqdm
|
from tqdm.asyncio import tqdm
|
||||||
from transformers import PreTrainedTokenizerBase
|
from transformers import PreTrainedTokenizerBase
|
||||||
|
|
||||||
@ -57,6 +52,9 @@ try:
|
|||||||
except ImportError:
|
except ImportError:
|
||||||
from argparse import ArgumentParser as FlexibleArgumentParser
|
from argparse import ArgumentParser as FlexibleArgumentParser
|
||||||
|
|
||||||
|
from benchmark_dataset import (BurstGPTDataset, HuggingFaceDataset,
|
||||||
|
RandomDataset, SampleRequest, ShareGPTDataset,
|
||||||
|
SonnetDataset, VisionArenaDataset)
|
||||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||||
|
|
||||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||||
@ -92,325 +90,18 @@ class BenchmarkMetrics:
|
|||||||
percentiles_e2el_ms: list[tuple[float, float]]
|
percentiles_e2el_ms: list[tuple[float, float]]
|
||||||
|
|
||||||
|
|
||||||
def sample_sharegpt_requests(
|
|
||||||
dataset_path: str,
|
|
||||||
num_requests: int,
|
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
|
||||||
fixed_output_len: Optional[int] = None,
|
|
||||||
) -> list[tuple[str, int, int, None]]:
|
|
||||||
# Load the dataset.
|
|
||||||
with open(dataset_path, encoding='utf-8') as f:
|
|
||||||
dataset = json.load(f)
|
|
||||||
# Filter out the conversations with less than 2 turns.
|
|
||||||
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
|
||||||
# Only keep the first two turns of each conversation.
|
|
||||||
dataset = [(data["conversations"][0]["value"],
|
|
||||||
data["conversations"][1]["value"]) for data in dataset]
|
|
||||||
|
|
||||||
# Shuffle the dataset.
|
|
||||||
random.shuffle(dataset)
|
|
||||||
|
|
||||||
# Filter out sequences that are too long or too short
|
|
||||||
filtered_dataset: list[tuple[str, int, int]] = []
|
|
||||||
for i in range(len(dataset)):
|
|
||||||
if len(filtered_dataset) == num_requests:
|
|
||||||
break
|
|
||||||
|
|
||||||
# Tokenize the prompts and completions.
|
|
||||||
prompt = dataset[i][0]
|
|
||||||
prompt_token_ids = tokenizer(prompt).input_ids
|
|
||||||
completion = dataset[i][1]
|
|
||||||
completion_token_ids = tokenizer(completion).input_ids
|
|
||||||
prompt_len = len(prompt_token_ids)
|
|
||||||
output_len = len(completion_token_ids
|
|
||||||
) if fixed_output_len is None else fixed_output_len
|
|
||||||
if prompt_len < 4 or (fixed_output_len is None and output_len < 4):
|
|
||||||
# Prune too short sequences.
|
|
||||||
continue
|
|
||||||
if prompt_len > 1024 or prompt_len + output_len > 2048:
|
|
||||||
# Prune too long sequences.
|
|
||||||
continue
|
|
||||||
filtered_dataset.append((prompt, prompt_len, output_len, None))
|
|
||||||
|
|
||||||
return filtered_dataset
|
|
||||||
|
|
||||||
|
|
||||||
def sample_burstgpt_requests(
|
|
||||||
dataset_path: str,
|
|
||||||
num_requests: int,
|
|
||||||
random_seed: int,
|
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
|
||||||
) -> list[tuple[str, int, int, None]]:
|
|
||||||
df = pd.read_csv(dataset_path)
|
|
||||||
gpt4_df = df[df["Model"] == "GPT-4"]
|
|
||||||
# Remove the failed requests (i.e., response length is 0)
|
|
||||||
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
|
|
||||||
# Randomly sample num_requests from the dataset
|
|
||||||
if num_requests <= len(gpt4_df):
|
|
||||||
gpt4_df = gpt4_df.sample(n=num_requests, random_state=random_seed)
|
|
||||||
else:
|
|
||||||
gpt4_df = gpt4_df.sample(n=num_requests,
|
|
||||||
random_state=random_seed,
|
|
||||||
replace=True)
|
|
||||||
# Convert the dataframe to a list of tuples
|
|
||||||
dataset = gpt4_df.values.tolist()
|
|
||||||
input_requests = []
|
|
||||||
for i in range(num_requests):
|
|
||||||
input_len = int(dataset[i][2])
|
|
||||||
output_len = int(dataset[i][3])
|
|
||||||
prompt = tokenizer.decode([(i + j) % tokenizer.vocab_size
|
|
||||||
for j in range(input_len)])
|
|
||||||
input_requests.append((prompt, input_len, output_len, None))
|
|
||||||
return input_requests
|
|
||||||
|
|
||||||
|
|
||||||
def sample_sonnet_requests(
|
|
||||||
dataset_path: str,
|
|
||||||
num_requests: int,
|
|
||||||
input_len: int,
|
|
||||||
output_len: int,
|
|
||||||
prefix_len: int,
|
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
|
||||||
) -> list[tuple[str, str, int, int, None]]:
|
|
||||||
assert (
|
|
||||||
input_len > prefix_len
|
|
||||||
), "'args.sonnet-input-len' must be greater than 'args.sonnet-prefix-len'."
|
|
||||||
|
|
||||||
# Load the dataset.
|
|
||||||
with open(dataset_path, encoding='utf-8') as f:
|
|
||||||
poem_lines = f.readlines()
|
|
||||||
|
|
||||||
# Tokenize the poem lines.
|
|
||||||
poem_token_ids = tokenizer(poem_lines).input_ids
|
|
||||||
average_poem_len = sum(
|
|
||||||
len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)
|
|
||||||
|
|
||||||
# Base prefix for all requests.
|
|
||||||
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
|
||||||
base_message = [{
|
|
||||||
"role": "user",
|
|
||||||
"content": base_prompt,
|
|
||||||
}]
|
|
||||||
base_prompt_formatted = tokenizer.apply_chat_template(
|
|
||||||
base_message, add_generation_prompt=True, tokenize=False)
|
|
||||||
base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
|
|
||||||
|
|
||||||
assert (
|
|
||||||
input_len > base_prompt_offset
|
|
||||||
), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
|
|
||||||
num_input_lines = round(
|
|
||||||
(input_len - base_prompt_offset) / average_poem_len)
|
|
||||||
|
|
||||||
# First approximately `prefix_len` number of tokens in the
|
|
||||||
# prompt are fixed poem lines.
|
|
||||||
assert (
|
|
||||||
prefix_len > base_prompt_offset
|
|
||||||
), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
|
|
||||||
|
|
||||||
num_prefix_lines = round(
|
|
||||||
(prefix_len - base_prompt_offset) / average_poem_len)
|
|
||||||
prefix_lines = poem_lines[:num_prefix_lines]
|
|
||||||
|
|
||||||
# Sample the rest of lines per request.
|
|
||||||
sampled_requests: list[tuple[str, int, int]] = []
|
|
||||||
for _ in range(num_requests):
|
|
||||||
num_lines_needed = num_input_lines - num_prefix_lines
|
|
||||||
sampled_lines = "".join(prefix_lines +
|
|
||||||
random.choices(poem_lines, k=num_lines_needed))
|
|
||||||
|
|
||||||
prompt = f"{base_prompt}{sampled_lines}"
|
|
||||||
message = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": prompt,
|
|
||||||
},
|
|
||||||
]
|
|
||||||
prompt_formatted = tokenizer.apply_chat_template(
|
|
||||||
message, add_generation_prompt=True, tokenize=False)
|
|
||||||
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
|
||||||
sampled_requests.append(
|
|
||||||
(prompt, prompt_formatted, prompt_len, output_len, None))
|
|
||||||
|
|
||||||
return sampled_requests
|
|
||||||
|
|
||||||
|
|
||||||
def sample_vision_arena_requests(
|
|
||||||
dataset,
|
|
||||||
num_requests: int,
|
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
|
||||||
fixed_output_len: Optional[int] = None,
|
|
||||||
) -> list[tuple[str, str, int, Optional[dict[str, Collection[str]]]]]:
|
|
||||||
sampled_requests: list[tuple[str, int, int, dict[str,
|
|
||||||
Collection[str]]]] = []
|
|
||||||
for data in dataset:
|
|
||||||
if len(sampled_requests) == num_requests:
|
|
||||||
break
|
|
||||||
|
|
||||||
prompt = data["turns"][0][0]['content']
|
|
||||||
|
|
||||||
prompt_token_ids = tokenizer(prompt).input_ids
|
|
||||||
if fixed_output_len is None:
|
|
||||||
# Default max output len is set to 128
|
|
||||||
print("--hf-output-len is not provided. Using default value 128.")
|
|
||||||
fixed_output_len = 128
|
|
||||||
|
|
||||||
prompt_len = len(prompt_token_ids)
|
|
||||||
output_len = fixed_output_len
|
|
||||||
|
|
||||||
assert isinstance(
|
|
||||||
data["images"][0],
|
|
||||||
Image), ("Input image format must be `PIL.Image.Image`, "
|
|
||||||
f"given {type(data['image'])}.")
|
|
||||||
image: Image = data["images"][0]
|
|
||||||
image = image.convert("RGB")
|
|
||||||
image_data = io.BytesIO()
|
|
||||||
image.save(image_data, format='JPEG')
|
|
||||||
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
|
|
||||||
mm_content = {
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {
|
|
||||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
|
|
||||||
|
|
||||||
return sampled_requests
|
|
||||||
|
|
||||||
|
|
||||||
def sample_hf_requests(
|
|
||||||
dataset_path: str,
|
|
||||||
dataset_subset: Optional[str],
|
|
||||||
dataset_split: str,
|
|
||||||
num_requests: int,
|
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
|
||||||
random_seed: int,
|
|
||||||
fixed_output_len: Optional[int] = None,
|
|
||||||
) -> list[tuple[str, str, int, Optional[dict[str, Collection[str]]]]]:
|
|
||||||
|
|
||||||
# Special case for vision_arena dataset
|
|
||||||
if dataset_path == 'lmarena-ai/vision-arena-bench-v0.1' \
|
|
||||||
and dataset_subset is None:
|
|
||||||
assert dataset_split == "train"
|
|
||||||
dataset = load_dataset(dataset_path,
|
|
||||||
name=dataset_subset,
|
|
||||||
split=dataset_split,
|
|
||||||
streaming=True)
|
|
||||||
dataset = dataset.shuffle(seed=random_seed)
|
|
||||||
return sample_vision_arena_requests(dataset, num_requests, tokenizer,
|
|
||||||
fixed_output_len)
|
|
||||||
|
|
||||||
dataset = load_dataset(dataset_path,
|
|
||||||
name=dataset_subset,
|
|
||||||
split=dataset_split,
|
|
||||||
streaming=True)
|
|
||||||
assert "conversations" in dataset.features, (
|
|
||||||
"HF Dataset must have 'conversations' column.")
|
|
||||||
filter_func = lambda x: len(x["conversations"]) >= 2
|
|
||||||
filtered_dataset = dataset.shuffle(seed=random_seed).filter(filter_func)
|
|
||||||
sampled_requests: list[tuple[str, int, int, dict[str,
|
|
||||||
Collection[str]]]] = []
|
|
||||||
for data in filtered_dataset:
|
|
||||||
if len(sampled_requests) == num_requests:
|
|
||||||
break
|
|
||||||
|
|
||||||
# Tokenize the prompts and completions.
|
|
||||||
prompt = data["conversations"][0]["value"]
|
|
||||||
prompt_token_ids = tokenizer(prompt).input_ids
|
|
||||||
completion = data["conversations"][1]["value"]
|
|
||||||
completion_token_ids = tokenizer(completion).input_ids
|
|
||||||
prompt_len = len(prompt_token_ids)
|
|
||||||
output_len = len(completion_token_ids
|
|
||||||
) if fixed_output_len is None else fixed_output_len
|
|
||||||
if fixed_output_len is None and (prompt_len < 4 or output_len < 4):
|
|
||||||
# Prune too short sequences.
|
|
||||||
continue
|
|
||||||
if fixed_output_len is None and \
|
|
||||||
(prompt_len > 1024 or prompt_len + output_len > 2048):
|
|
||||||
# Prune too long sequences.
|
|
||||||
continue
|
|
||||||
|
|
||||||
if "image" in data and isinstance(data["image"], Image):
|
|
||||||
image: Image = data["image"]
|
|
||||||
image = image.convert("RGB")
|
|
||||||
image_data = io.BytesIO()
|
|
||||||
image.save(image_data, format='JPEG')
|
|
||||||
image_base64 = base64.b64encode(
|
|
||||||
image_data.getvalue()).decode("utf-8")
|
|
||||||
mm_content = {
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {
|
|
||||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
|
||||||
},
|
|
||||||
}
|
|
||||||
elif "image" in data and isinstance(data["image"], str):
|
|
||||||
if (data["image"].startswith("http://") or \
|
|
||||||
data["image"].startswith("file://")):
|
|
||||||
image_url = data["image"]
|
|
||||||
else:
|
|
||||||
image_url = f"file://{data['image']}"
|
|
||||||
|
|
||||||
mm_content = {
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {
|
|
||||||
"url": image_url
|
|
||||||
},
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
mm_content = None
|
|
||||||
|
|
||||||
sampled_requests.append((prompt, prompt_len, output_len, mm_content))
|
|
||||||
|
|
||||||
return sampled_requests
|
|
||||||
|
|
||||||
|
|
||||||
def sample_random_requests(
|
|
||||||
prefix_len: int,
|
|
||||||
input_len: int,
|
|
||||||
output_len: int,
|
|
||||||
num_prompts: int,
|
|
||||||
range_ratio: float,
|
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
|
||||||
) -> list[tuple[str, int, int]]:
|
|
||||||
prefix_token_ids = np.random.randint(0,
|
|
||||||
tokenizer.vocab_size,
|
|
||||||
size=prefix_len).tolist()
|
|
||||||
|
|
||||||
input_lens = np.random.randint(
|
|
||||||
int(input_len * range_ratio),
|
|
||||||
input_len + 1,
|
|
||||||
size=num_prompts,
|
|
||||||
)
|
|
||||||
output_lens = np.random.randint(
|
|
||||||
int(output_len * range_ratio),
|
|
||||||
output_len + 1,
|
|
||||||
size=num_prompts,
|
|
||||||
)
|
|
||||||
offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
|
|
||||||
input_requests = []
|
|
||||||
for i in range(num_prompts):
|
|
||||||
prompt = tokenizer.decode(prefix_token_ids +
|
|
||||||
[(offsets[i] + i + j) % tokenizer.vocab_size
|
|
||||||
for j in range(input_lens[i])])
|
|
||||||
|
|
||||||
input_requests.append((prompt, int(prefix_len + input_lens[i]),
|
|
||||||
int(output_lens[i]), None))
|
|
||||||
|
|
||||||
return input_requests
|
|
||||||
|
|
||||||
|
|
||||||
async def get_request(
|
async def get_request(
|
||||||
input_requests: list[tuple[str, int, int]],
|
input_requests: list[SampleRequest],
|
||||||
request_rate: float,
|
request_rate: float,
|
||||||
burstiness: float = 1.0,
|
burstiness: float = 1.0,
|
||||||
) -> AsyncGenerator[tuple[str, int, int], None]:
|
) -> AsyncGenerator[SampleRequest, None]:
|
||||||
"""
|
"""
|
||||||
Asynchronously generates requests at a specified rate
|
Asynchronously generates requests at a specified rate
|
||||||
with OPTIONAL burstiness.
|
with OPTIONAL burstiness.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
input_requests:
|
input_requests:
|
||||||
A list of input requests, each represented as a tuple.
|
A list of input requests, each represented as a SampleRequest.
|
||||||
request_rate:
|
request_rate:
|
||||||
The rate at which requests are generated (requests/s).
|
The rate at which requests are generated (requests/s).
|
||||||
burstiness (optional):
|
burstiness (optional):
|
||||||
@ -422,7 +113,7 @@ async def get_request(
|
|||||||
in more bursty requests, while a higher burstiness value
|
in more bursty requests, while a higher burstiness value
|
||||||
(burstiness > 1) results in a more uniform arrival of requests.
|
(burstiness > 1) results in a more uniform arrival of requests.
|
||||||
"""
|
"""
|
||||||
input_requests = iter(input_requests)
|
input_requests: Iterable[SampleRequest] = iter(input_requests)
|
||||||
|
|
||||||
# Calculate scale parameter theta to maintain the desired request_rate.
|
# Calculate scale parameter theta to maintain the desired request_rate.
|
||||||
assert burstiness > 0, (
|
assert burstiness > 0, (
|
||||||
@ -444,7 +135,7 @@ async def get_request(
|
|||||||
|
|
||||||
|
|
||||||
def calculate_metrics(
|
def calculate_metrics(
|
||||||
input_requests: list[tuple[str, int, int]],
|
input_requests: list[SampleRequest],
|
||||||
outputs: list[RequestFuncOutput],
|
outputs: list[RequestFuncOutput],
|
||||||
dur_s: float,
|
dur_s: float,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
@ -475,7 +166,7 @@ def calculate_metrics(
|
|||||||
tokenizer(outputs[i].generated_text,
|
tokenizer(outputs[i].generated_text,
|
||||||
add_special_tokens=False).input_ids)
|
add_special_tokens=False).input_ids)
|
||||||
actual_output_lens.append(output_len)
|
actual_output_lens.append(output_len)
|
||||||
total_input += input_requests[i][1]
|
total_input += input_requests[i].prompt_len
|
||||||
tpot = 0
|
tpot = 0
|
||||||
if output_len > 1:
|
if output_len > 1:
|
||||||
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
|
latency_minus_ttft = outputs[i].latency - outputs[i].ttft
|
||||||
@ -558,18 +249,18 @@ async def benchmark(
|
|||||||
model_id: str,
|
model_id: str,
|
||||||
model_name: str,
|
model_name: str,
|
||||||
tokenizer: PreTrainedTokenizerBase,
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
input_requests: list[tuple[str, int, int]],
|
input_requests: list[SampleRequest],
|
||||||
logprobs: Optional[int],
|
logprobs: Optional[int],
|
||||||
request_rate: float,
|
request_rate: float,
|
||||||
burstiness: float,
|
burstiness: float,
|
||||||
disable_tqdm: bool,
|
disable_tqdm: bool,
|
||||||
profile: bool,
|
profile: bool,
|
||||||
selected_percentile_metrics: list[str],
|
selected_percentile_metrics: list[str],
|
||||||
selected_percentiles: list[str],
|
selected_percentiles: list[float],
|
||||||
ignore_eos: bool,
|
ignore_eos: bool,
|
||||||
goodput_config_dict: dict[str, float],
|
goodput_config_dict: dict[str, float],
|
||||||
max_concurrency: Optional[int],
|
max_concurrency: Optional[int],
|
||||||
lora_modules: Optional[list[str]],
|
lora_modules: Optional[Iterable[str]],
|
||||||
):
|
):
|
||||||
if backend in ASYNC_REQUEST_FUNCS:
|
if backend in ASYNC_REQUEST_FUNCS:
|
||||||
request_func = ASYNC_REQUEST_FUNCS[backend]
|
request_func = ASYNC_REQUEST_FUNCS[backend]
|
||||||
@ -577,12 +268,16 @@ async def benchmark(
|
|||||||
raise ValueError(f"Unknown backend: {backend}")
|
raise ValueError(f"Unknown backend: {backend}")
|
||||||
|
|
||||||
print("Starting initial single prompt test run...")
|
print("Starting initial single prompt test run...")
|
||||||
test_prompt, test_prompt_len, test_output_len, test_mm_content = (
|
test_prompt, test_prompt_len, test_output_len, test_mm_content = \
|
||||||
input_requests[0])
|
input_requests[0].prompt, input_requests[0].prompt_len, \
|
||||||
|
input_requests[0].expected_output_len, \
|
||||||
|
input_requests[0].multi_modal_data
|
||||||
|
|
||||||
if backend != "openai-chat" and test_mm_content is not None:
|
if backend != "openai-chat" and test_mm_content is not None:
|
||||||
# multi-modal benchmark is only available on OpenAI Chat backend.
|
# multi-modal benchmark is only available on OpenAI Chat backend.
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Multi-modal content is only supported on 'openai-chat' backend.")
|
"Multi-modal content is only supported on 'openai-chat' backend.")
|
||||||
|
assert test_mm_content is None or isinstance(test_mm_content, dict)
|
||||||
test_input = RequestFuncInput(
|
test_input = RequestFuncInput(
|
||||||
model=model_id,
|
model=model_id,
|
||||||
model_name=model_name,
|
model_name=model_name,
|
||||||
@ -606,7 +301,8 @@ async def benchmark(
|
|||||||
if lora_modules:
|
if lora_modules:
|
||||||
# For each input request, choose a LoRA module at random.
|
# For each input request, choose a LoRA module at random.
|
||||||
lora_modules = iter(
|
lora_modules = iter(
|
||||||
[random.choice(lora_modules) for _ in range(len(input_requests))])
|
[random.choice(lora_modules) \
|
||||||
|
for _ in range(len(input_requests))])
|
||||||
|
|
||||||
if profile:
|
if profile:
|
||||||
print("Starting profiler...")
|
print("Starting profiler...")
|
||||||
@ -652,7 +348,9 @@ async def benchmark(
|
|||||||
benchmark_start_time = time.perf_counter()
|
benchmark_start_time = time.perf_counter()
|
||||||
tasks: list[asyncio.Task] = []
|
tasks: list[asyncio.Task] = []
|
||||||
async for request in get_request(input_requests, request_rate, burstiness):
|
async for request in get_request(input_requests, request_rate, burstiness):
|
||||||
prompt, prompt_len, output_len, mm_content = request
|
prompt, prompt_len, output_len, mm_content = request.prompt, \
|
||||||
|
request.prompt_len, request.expected_output_len, \
|
||||||
|
request.multi_modal_data
|
||||||
req_model_id, req_model_name = model_id, model_name
|
req_model_id, req_model_name = model_id, model_name
|
||||||
if lora_modules:
|
if lora_modules:
|
||||||
req_lora_module = next(lora_modules)
|
req_lora_module = next(lora_modules)
|
||||||
@ -867,76 +565,72 @@ def main(args: argparse.Namespace):
|
|||||||
"Please specify '--dataset-name' and the corresponding "
|
"Please specify '--dataset-name' and the corresponding "
|
||||||
"'--dataset-path' if required.")
|
"'--dataset-path' if required.")
|
||||||
|
|
||||||
elif args.dataset_name == "sharegpt":
|
if args.dataset_name == "sonnet":
|
||||||
input_requests = sample_sharegpt_requests(
|
dataset = SonnetDataset(dataset_path=args.dataset_path)
|
||||||
dataset_path=args.dataset_path,
|
# For the "sonnet" dataset, formatting depends on the backend.
|
||||||
num_requests=args.num_prompts,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
fixed_output_len=args.sharegpt_output_len,
|
|
||||||
)
|
|
||||||
|
|
||||||
elif args.dataset_name == "burstgpt":
|
|
||||||
input_requests = sample_burstgpt_requests(
|
|
||||||
dataset_path=args.dataset_path,
|
|
||||||
num_requests=args.num_prompts,
|
|
||||||
random_seed=args.seed,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
)
|
|
||||||
|
|
||||||
elif args.dataset_name == "sonnet":
|
|
||||||
# Do not format the prompt, pass to message directly
|
|
||||||
if args.backend == "openai-chat":
|
if args.backend == "openai-chat":
|
||||||
input_requests = sample_sonnet_requests(
|
input_requests = dataset.sample(num_requests=args.num_prompts,
|
||||||
dataset_path=args.dataset_path,
|
input_len=args.sonnet_input_len,
|
||||||
num_requests=args.num_prompts,
|
output_len=args.sonnet_output_len,
|
||||||
input_len=args.sonnet_input_len,
|
prefix_len=args.sonnet_prefix_len,
|
||||||
output_len=args.sonnet_output_len,
|
tokenizer=tokenizer,
|
||||||
prefix_len=args.sonnet_prefix_len,
|
return_prompt_formatted=False)
|
||||||
tokenizer=tokenizer,
|
|
||||||
)
|
|
||||||
input_requests = [(prompt, prompt_len, output_len, None)
|
|
||||||
for prompt, prompt_formatted, prompt_len,
|
|
||||||
output_len, _ in input_requests]
|
|
||||||
else:
|
else:
|
||||||
assert (
|
assert tokenizer.chat_template or tokenizer.default_chat_template, (
|
||||||
tokenizer.chat_template or tokenizer.default_chat_template
|
"Tokenizer/model must have chat template for sonnet dataset.")
|
||||||
), "Tokenizer/model must have chat template for sonnet dataset."
|
input_requests = dataset.sample(num_requests=args.num_prompts,
|
||||||
input_requests = sample_sonnet_requests(
|
input_len=args.sonnet_input_len,
|
||||||
dataset_path=args.dataset_path,
|
output_len=args.sonnet_output_len,
|
||||||
num_requests=args.num_prompts,
|
prefix_len=args.sonnet_prefix_len,
|
||||||
input_len=args.sonnet_input_len,
|
tokenizer=tokenizer,
|
||||||
output_len=args.sonnet_output_len,
|
return_prompt_formatted=True)
|
||||||
prefix_len=args.sonnet_prefix_len,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
)
|
|
||||||
input_requests = [(prompt_formatted, prompt_len, output_len, None)
|
|
||||||
for prompt, prompt_formatted, prompt_len,
|
|
||||||
output_len, _ in input_requests]
|
|
||||||
|
|
||||||
elif args.dataset_name == "hf":
|
elif args.dataset_name == "hf":
|
||||||
input_requests = sample_hf_requests(
|
# Choose between VisionArenaDataset
|
||||||
|
# and HuggingFaceDataset based on provided parameters.
|
||||||
|
dataset_class = (VisionArenaDataset if args.dataset_path
|
||||||
|
== VisionArenaDataset.VISION_ARENA_DATASET_PATH
|
||||||
|
and args.hf_subset is None else HuggingFaceDataset)
|
||||||
|
input_requests = dataset_class(
|
||||||
dataset_path=args.dataset_path,
|
dataset_path=args.dataset_path,
|
||||||
dataset_subset=args.hf_subset,
|
dataset_subset=args.hf_subset,
|
||||||
dataset_split=args.hf_split,
|
dataset_split=args.hf_split,
|
||||||
|
).sample(
|
||||||
num_requests=args.num_prompts,
|
num_requests=args.num_prompts,
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
random_seed=args.seed,
|
random_seed=args.seed,
|
||||||
fixed_output_len=args.hf_output_len,
|
output_len=args.hf_output_len,
|
||||||
)
|
|
||||||
|
|
||||||
elif args.dataset_name == "random":
|
|
||||||
input_requests = sample_random_requests(
|
|
||||||
prefix_len=args.random_prefix_len,
|
|
||||||
input_len=args.random_input_len,
|
|
||||||
output_len=args.random_output_len,
|
|
||||||
num_prompts=args.num_prompts,
|
|
||||||
range_ratio=args.random_range_ratio,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown dataset: {args.dataset_name}")
|
# For datasets that follow a similar structure, use a mapping.
|
||||||
|
dataset_mapping = {
|
||||||
|
"sharegpt":
|
||||||
|
lambda: ShareGPTDataset(random_seed=args.seed,
|
||||||
|
dataset_path=args.dataset_path).sample(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
num_requests=args.num_prompts,
|
||||||
|
output_len=args.sharegpt_output_len,
|
||||||
|
),
|
||||||
|
"burstgpt":
|
||||||
|
lambda: BurstGPTDataset(random_seed=args.seed,
|
||||||
|
dataset_path=args.dataset_path).
|
||||||
|
sample(tokenizer=tokenizer, num_requests=args.num_prompts),
|
||||||
|
"random":
|
||||||
|
lambda: RandomDataset(dataset_path=args.dataset_path).sample(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
num_requests=args.num_prompts,
|
||||||
|
prefix_len=args.random_prefix_len,
|
||||||
|
input_len=args.random_input_len,
|
||||||
|
output_len=args.random_output_len,
|
||||||
|
range_ratio=args.random_range_ratio,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
input_requests = dataset_mapping[args.dataset_name]()
|
||||||
|
except KeyError as err:
|
||||||
|
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
|
||||||
goodput_config_dict = check_goodput_args(args)
|
goodput_config_dict = check_goodput_args(args)
|
||||||
|
|
||||||
# Avoid GC processing "static" data - reduce pause times.
|
# Avoid GC processing "static" data - reduce pause times.
|
||||||
@ -1298,4 +992,5 @@ if __name__ == "__main__":
|
|||||||
"script chooses a LoRA module at random.")
|
"script chooses a LoRA module at random.")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
main(args)
|
main(args)
|
||||||
|
@ -6,13 +6,14 @@ import json
|
|||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
from functools import cache
|
import warnings
|
||||||
from typing import Any, Optional, Union
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import uvloop
|
import uvloop
|
||||||
|
from benchmark_dataset import (BurstGPTDataset, RandomDataset, SampleRequest,
|
||||||
|
ShareGPTDataset, SonnetDataset)
|
||||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||||
from PIL import Image
|
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||||
PreTrainedTokenizerBase)
|
PreTrainedTokenizerBase)
|
||||||
@ -22,148 +23,10 @@ from vllm.entrypoints.openai.api_server import (
|
|||||||
build_async_engine_client_from_engine_args)
|
build_async_engine_client_from_engine_args)
|
||||||
from vllm.inputs import TextPrompt, TokensPrompt
|
from vllm.inputs import TextPrompt, TokensPrompt
|
||||||
from vllm.lora.request import LoRARequest
|
from vllm.lora.request import LoRARequest
|
||||||
from vllm.lora.utils import get_adapter_absolute_path
|
|
||||||
from vllm.multimodal import MultiModalDataDict
|
|
||||||
from vllm.sampling_params import BeamSearchParams
|
from vllm.sampling_params import BeamSearchParams
|
||||||
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
|
||||||
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
|
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
|
||||||
|
|
||||||
|
|
||||||
@dataclasses.dataclass
|
|
||||||
class SampleRequest:
|
|
||||||
"""A class representing a single inference request for benchmarking.
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
prompt: The input text prompt for the model.
|
|
||||||
prompt_len: The length of the prompt in tokens.
|
|
||||||
expected_output_len: The expected length of the output in tokens.
|
|
||||||
multi_modal_data: Optional dictionary containing multi-modal data (e.g.
|
|
||||||
images).
|
|
||||||
lora_request: Optional LoRARequest specifying the LoRA to use.
|
|
||||||
"""
|
|
||||||
prompt: str
|
|
||||||
prompt_len: int
|
|
||||||
expected_output_len: int
|
|
||||||
multi_modal_data: Optional[MultiModalDataDict] = None
|
|
||||||
lora_request: Optional[LoRARequest] = None
|
|
||||||
|
|
||||||
|
|
||||||
def _get_prompt_for_image_model(question: str, *, model: str) -> str:
|
|
||||||
"""Prepend and append special tokens around the question to form a prompt.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
question: The input question text to wrap with special tokens
|
|
||||||
model: The name of the model being used, to determine which special
|
|
||||||
tokens to add
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
The formatted prompt string with appropriate special tokens for the
|
|
||||||
model
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
ValueError: If an unsupported model name is provided
|
|
||||||
"""
|
|
||||||
model = model.lower()
|
|
||||||
if "pixtral" in model:
|
|
||||||
return f"<s>[INST]{question}\n[IMG][/INST]"
|
|
||||||
raise ValueError(f"Unsupported model {model}")
|
|
||||||
|
|
||||||
|
|
||||||
@cache
|
|
||||||
def lora_path_on_disk(lora_path: str) -> str:
|
|
||||||
return get_adapter_absolute_path(lora_path)
|
|
||||||
|
|
||||||
|
|
||||||
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
|
|
||||||
|
|
||||||
|
|
||||||
def get_random_lora_request(
|
|
||||||
args: argparse.Namespace
|
|
||||||
) -> tuple[LoRARequest, Optional[AnyTokenizer]]:
|
|
||||||
global lora_tokenizer_cache
|
|
||||||
lora_id = random.randint(1, args.max_loras)
|
|
||||||
lora_request = LoRARequest(lora_name=str(lora_id),
|
|
||||||
lora_int_id=lora_id,
|
|
||||||
lora_path=lora_path_on_disk(args.lora_path))
|
|
||||||
if lora_id not in lora_tokenizer_cache:
|
|
||||||
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
|
|
||||||
return lora_request, lora_tokenizer_cache[lora_id]
|
|
||||||
|
|
||||||
|
|
||||||
def sample_requests(tokenizer: PreTrainedTokenizerBase,
|
|
||||||
args: argparse.Namespace) -> list[SampleRequest]:
|
|
||||||
|
|
||||||
dataset_path: str = args.dataset
|
|
||||||
num_requests: int = args.num_prompts
|
|
||||||
fixed_output_len: Optional[int] = args.output_len
|
|
||||||
model: str = args.model
|
|
||||||
if fixed_output_len is not None and fixed_output_len < 4:
|
|
||||||
raise ValueError("output_len too small")
|
|
||||||
|
|
||||||
# Load the dataset.
|
|
||||||
with open(dataset_path) as f:
|
|
||||||
dataset = json.load(f)
|
|
||||||
# Filter out the conversations with less than 2 turns.
|
|
||||||
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
|
||||||
# Shuffle the dataset.
|
|
||||||
random.shuffle(dataset)
|
|
||||||
|
|
||||||
# Filter out sequences that are too long or too short
|
|
||||||
filtered_dataset: list[SampleRequest] = []
|
|
||||||
for data in tqdm(dataset,
|
|
||||||
total=len(filtered_dataset),
|
|
||||||
desc="sampling requests"):
|
|
||||||
if len(filtered_dataset) == num_requests:
|
|
||||||
break
|
|
||||||
|
|
||||||
# Only keep the first two turns of each conversation.
|
|
||||||
prompt = data["conversations"][0]["value"]
|
|
||||||
completion = data["conversations"][1]["value"]
|
|
||||||
|
|
||||||
multi_modal_data: Optional[MultiModalDataDict] = None
|
|
||||||
if "image" in data:
|
|
||||||
multi_modal_data = multi_modal_data or {}
|
|
||||||
image_path = data["image"]
|
|
||||||
# TODO(vllm-project/vllm/issues/9778): Support multiple images.
|
|
||||||
assert isinstance(image_path,
|
|
||||||
str), "Only support single image input"
|
|
||||||
try:
|
|
||||||
multi_modal_data["image"] = Image.open(image_path).convert(
|
|
||||||
"RGB")
|
|
||||||
except FileNotFoundError:
|
|
||||||
# Ignore datapoint where asset is missing
|
|
||||||
continue
|
|
||||||
prompt = _get_prompt_for_image_model(question=prompt, model=model)
|
|
||||||
|
|
||||||
request_tokenizer = tokenizer
|
|
||||||
lora_request: Optional[LoRARequest] = None
|
|
||||||
if args.enable_lora:
|
|
||||||
lora_request, lora_tokenizer = get_random_lora_request(args)
|
|
||||||
if lora_tokenizer:
|
|
||||||
request_tokenizer = lora_tokenizer
|
|
||||||
|
|
||||||
# Tokenize the prompts and completions.
|
|
||||||
prompt_token_ids = request_tokenizer(prompt).input_ids
|
|
||||||
completion_token_ids = request_tokenizer(completion).input_ids
|
|
||||||
prompt_len = len(prompt_token_ids)
|
|
||||||
output_len = len(completion_token_ids
|
|
||||||
) if fixed_output_len is None else fixed_output_len
|
|
||||||
if prompt_len < 4 or output_len < 4:
|
|
||||||
# Prune too short sequences.
|
|
||||||
continue
|
|
||||||
if prompt_len > 1024 or prompt_len + output_len > 2048:
|
|
||||||
# Prune too long sequences.
|
|
||||||
continue
|
|
||||||
filtered_dataset.append(
|
|
||||||
SampleRequest(prompt=prompt,
|
|
||||||
prompt_len=prompt_len,
|
|
||||||
expected_output_len=output_len,
|
|
||||||
multi_modal_data=multi_modal_data,
|
|
||||||
lora_request=lora_request))
|
|
||||||
|
|
||||||
return filtered_dataset
|
|
||||||
|
|
||||||
|
|
||||||
def run_vllm(
|
def run_vllm(
|
||||||
requests: list[SampleRequest],
|
requests: list[SampleRequest],
|
||||||
n: int,
|
n: int,
|
||||||
@ -381,61 +244,50 @@ def save_to_pytorch_benchmark_format(args: argparse.Namespace,
|
|||||||
write_to_json(pt_file, pt_records)
|
write_to_json(pt_file, pt_records)
|
||||||
|
|
||||||
|
|
||||||
|
def get_requests(args, tokenizer):
|
||||||
|
# Common parameters for all dataset types.
|
||||||
|
common_kwargs = {
|
||||||
|
"dataset_path": args.dataset_path,
|
||||||
|
"random_seed": args.seed,
|
||||||
|
}
|
||||||
|
sample_kwargs = {
|
||||||
|
"tokenizer": tokenizer,
|
||||||
|
"lora_path": args.lora_path,
|
||||||
|
"max_loras": args.max_loras,
|
||||||
|
"num_requests": args.num_prompts,
|
||||||
|
"input_len": args.input_len,
|
||||||
|
"output_len": args.output_len,
|
||||||
|
}
|
||||||
|
if args.dataset_path is None or args.dataset_name == "random":
|
||||||
|
sample_kwargs["range_ratio"] = args.random_range_ratio
|
||||||
|
sample_kwargs["prefix_len"] = args.prefix_len
|
||||||
|
dataset_cls = RandomDataset
|
||||||
|
elif args.dataset_name == "sharegpt":
|
||||||
|
dataset_cls = ShareGPTDataset
|
||||||
|
elif args.dataset_name == "sonnet":
|
||||||
|
assert tokenizer.chat_template or tokenizer.default_chat_template, (
|
||||||
|
"Tokenizer/model must have chat template for sonnet dataset.")
|
||||||
|
dataset_cls = SonnetDataset
|
||||||
|
sample_kwargs["prefix_len"] = args.prefix_len
|
||||||
|
sample_kwargs["return_prompt_formatted"] = True
|
||||||
|
elif args.dataset_name == "burstgpt":
|
||||||
|
dataset_cls = BurstGPTDataset
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown dataset name: {args.dataset_name}")
|
||||||
|
# Remove None values
|
||||||
|
sample_kwargs = {k: v for k, v in sample_kwargs.items() if v is not None}
|
||||||
|
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
|
||||||
|
|
||||||
|
|
||||||
def main(args: argparse.Namespace):
|
def main(args: argparse.Namespace):
|
||||||
|
if args.seed is None:
|
||||||
|
args.seed = 0
|
||||||
print(args)
|
print(args)
|
||||||
random.seed(args.seed)
|
random.seed(args.seed)
|
||||||
|
|
||||||
# Sample the requests.
|
# Sample the requests.
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
args.tokenizer, trust_remote_code=args.trust_remote_code)
|
||||||
if args.dataset is None:
|
requests = get_requests(args, tokenizer)
|
||||||
vocab_size = tokenizer.vocab_size
|
|
||||||
requests = []
|
|
||||||
for _ in range(args.num_prompts):
|
|
||||||
|
|
||||||
request_tokenizer = tokenizer
|
|
||||||
lora_request: Optional[LoRARequest] = None
|
|
||||||
if args.enable_lora:
|
|
||||||
lora_request, lora_tokenizer = get_random_lora_request(args)
|
|
||||||
if lora_tokenizer:
|
|
||||||
request_tokenizer = lora_tokenizer
|
|
||||||
|
|
||||||
# Synthesize a prompt with the given input length.
|
|
||||||
candidate_ids = [
|
|
||||||
random.randint(0, vocab_size - 1)
|
|
||||||
for _ in range(args.input_len)
|
|
||||||
]
|
|
||||||
|
|
||||||
candidate_prompt = {"prompt_token_ids": candidate_ids}
|
|
||||||
|
|
||||||
if not args.skip_tokenizer_init:
|
|
||||||
# As tokenizer may add additional tokens like BOS, we need
|
|
||||||
# to try different lengths to get the desired input length.
|
|
||||||
for _ in range(5): # Max attempts to correct
|
|
||||||
candidate_prompt = request_tokenizer.decode(candidate_ids)
|
|
||||||
tokenized_len = len(
|
|
||||||
request_tokenizer.encode(candidate_prompt))
|
|
||||||
|
|
||||||
if tokenized_len == args.input_len:
|
|
||||||
break
|
|
||||||
|
|
||||||
# Adjust length based on difference
|
|
||||||
diff = args.input_len - tokenized_len
|
|
||||||
if diff > 0:
|
|
||||||
candidate_ids.extend([
|
|
||||||
random.randint(100, vocab_size - 100)
|
|
||||||
for _ in range(diff)
|
|
||||||
])
|
|
||||||
else:
|
|
||||||
candidate_ids = candidate_ids[:diff]
|
|
||||||
requests.append(
|
|
||||||
SampleRequest(prompt=candidate_prompt,
|
|
||||||
prompt_len=args.input_len,
|
|
||||||
expected_output_len=args.output_len,
|
|
||||||
lora_request=lora_request))
|
|
||||||
else:
|
|
||||||
requests = sample_requests(tokenizer, args)
|
|
||||||
|
|
||||||
is_multi_modal = any(request.multi_modal_data is not None
|
is_multi_modal = any(request.multi_modal_data is not None
|
||||||
for request in requests)
|
for request in requests)
|
||||||
if args.backend == "vllm":
|
if args.backend == "vllm":
|
||||||
@ -470,7 +322,7 @@ def main(args: argparse.Namespace):
|
|||||||
print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
|
print("\033[91mWARNING\033[0m: Multi-modal request detected. The "
|
||||||
"following metrics are not accurate because image tokens are not"
|
"following metrics are not accurate because image tokens are not"
|
||||||
" counted. See vllm-project/vllm/issues/9778 for details.")
|
" counted. See vllm-project/vllm/issues/9778 for details.")
|
||||||
# TODO(vllm-project/vllm/issues/9778): Count molti-modal token length.
|
# TODO(vllm-project/vllm/issues/9778): Count multi-modal token length.
|
||||||
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
||||||
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
|
f"{total_num_tokens / elapsed_time:.2f} total tokens/s, "
|
||||||
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
|
f"{total_output_tokens / elapsed_time:.2f} output tokens/s")
|
||||||
@ -495,12 +347,23 @@ if __name__ == "__main__":
|
|||||||
type=str,
|
type=str,
|
||||||
choices=["vllm", "hf", "mii"],
|
choices=["vllm", "hf", "mii"],
|
||||||
default="vllm")
|
default="vllm")
|
||||||
parser.add_argument("--dataset",
|
parser.add_argument("--dataset-name",
|
||||||
|
type=str,
|
||||||
|
choices=["sharegpt", "random", "sonnet", "burstgpt"],
|
||||||
|
help="Name of the dataset to benchmark on.",
|
||||||
|
default="sharegpt")
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Path to the ShareGPT dataset, will be deprecated in\
|
||||||
|
the next release. The dataset is expected to "
|
||||||
|
"be a json in form of list[dict[..., conversations: "
|
||||||
|
"list[dict[..., value: <prompt_or_response>]]]]")
|
||||||
|
parser.add_argument("--dataset-path",
|
||||||
type=str,
|
type=str,
|
||||||
default=None,
|
default=None,
|
||||||
help="Path to the dataset. The dataset is expected to "
|
help="Path to the dataset")
|
||||||
"be a json in form of list[dict[..., conversations: "
|
|
||||||
"list[dict[..., value: <prompt_or_response>]]]]")
|
|
||||||
parser.add_argument("--input-len",
|
parser.add_argument("--input-len",
|
||||||
type=int,
|
type=int,
|
||||||
default=None,
|
default=None,
|
||||||
@ -547,14 +410,35 @@ if __name__ == "__main__":
|
|||||||
default=None,
|
default=None,
|
||||||
help="Path to the lora adapters to use. This can be an absolute path, "
|
help="Path to the lora adapters to use. This can be an absolute path, "
|
||||||
"a relative path, or a Hugging Face model identifier.")
|
"a relative path, or a Hugging Face model identifier.")
|
||||||
|
parser.add_argument("--prefix-len",
|
||||||
|
type=int,
|
||||||
|
default=None,
|
||||||
|
help="Number of prefix tokens per request."
|
||||||
|
"This is for the RandomDataset and SonnetDataset")
|
||||||
|
# random dataset
|
||||||
|
parser.add_argument(
|
||||||
|
"--random-range-ratio",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Range of sampled ratio of input/output length, "
|
||||||
|
"used only for RandomDataSet.",
|
||||||
|
)
|
||||||
|
|
||||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
if args.tokenizer is None:
|
if args.tokenizer is None:
|
||||||
args.tokenizer = args.model
|
args.tokenizer = args.model
|
||||||
if args.dataset is None:
|
if args.dataset is not None:
|
||||||
assert args.input_len is not None
|
warnings.warn(
|
||||||
assert args.output_len is not None
|
"The '--dataset' argument will be deprecated in the next "
|
||||||
|
"release. Please use '--dataset-name' and "
|
||||||
|
"'--dataset-path' in the future runs.",
|
||||||
|
stacklevel=2)
|
||||||
|
args.dataset_path = args.dataset
|
||||||
|
if args.dataset is None and args.dataset_path is None:
|
||||||
|
# for random dataset, the default sampling setting is in
|
||||||
|
# benchmark_dataset.RandomDataset
|
||||||
|
print("When dataset is not set, it will default to random dataset")
|
||||||
else:
|
else:
|
||||||
assert args.input_len is None
|
assert args.input_len is None
|
||||||
if args.enable_lora:
|
if args.enable_lora:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user