[Doc] Document Matryoshka Representation Learning support (#16770)

This commit is contained in:
wang.yuqi 2025-04-17 21:37:37 +08:00 committed by GitHub
parent dbe7f07001
commit 11c3b98491
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 110 additions and 0 deletions

View File

@ -141,3 +141,77 @@ Our [OpenAI-Compatible Server](#openai-compatible-server) provides endpoints tha
- [Pooling API](#pooling-api) is similar to `LLM.encode`, being applicable to all types of pooling models. - [Pooling API](#pooling-api) is similar to `LLM.encode`, being applicable to all types of pooling models.
- [Embeddings API](#embeddings-api) is similar to `LLM.embed`, accepting both text and [multi-modal inputs](#multimodal-inputs) for embedding models. - [Embeddings API](#embeddings-api) is similar to `LLM.embed`, accepting both text and [multi-modal inputs](#multimodal-inputs) for embedding models.
- [Score API](#score-api) is similar to `LLM.score` for cross-encoder models. - [Score API](#score-api) is similar to `LLM.score` for cross-encoder models.
## Matryoshka Embeddings
[Matryoshka Embeddings](https://sbert.net/examples/sentence_transformer/training/matryoshka/README.html#matryoshka-embeddings) or [Matryoshka Representation Learning (MRL)](https://arxiv.org/abs/2205.13147) is a technique used in training embedding models. It allows user to trade off between performance and cost.
:::{warning}
Not all embedding models are trained using Matryoshka Representation Learning. To avoid misuse of the `dimensions` parameter, vLLM returns an error for requests that attempt to change the output dimension of models that do not support Matryoshka Embeddings.
For example, setting `dimensions` parameter while using the `BAAI/bge-m3` model will result in the following error.
```json
{"object":"error","message":"Model \"BAAI/bge-m3\" does not support matryoshka representation, changing output dimensions will lead to poor results.","type":"BadRequestError","param":null,"code":400}
```
:::
### Manually enable Matryoshka Embeddings
There is currently no official interface for specifying support for Matryoshka Embeddings. In vLLM, we simply check the existence of the fields `is_matryoshka` or `matryoshka_dimensions` inside `config.json`.
For models that support Matryoshka Embeddings but not recognized by vLLM, please manually override the config using `hf_overrides={"is_matryoshka": True}` (offline) or `--hf_overrides '{"is_matryoshka": true}'` (online).
Here is an example to serve a model with Matryoshka Embeddings enabled.
```text
vllm serve Snowflake/snowflake-arctic-embed-m-v1.5 --hf_overrides '{"is_matryoshka":true}'
```
### Offline Inference
You can change the output dimensions of embedding models that support Matryoshka Embeddings by using the dimensions parameter in {class}`~vllm.PoolingParams`.
```python
from vllm import LLM, PoolingParams
model = LLM(model="jinaai/jina-embeddings-v3",
task="embed",
trust_remote_code=True)
outputs = model.embed(["Follow the white rabbit."],
pooling_params=PoolingParams(dimensions=32))
print(outputs[0].outputs)
```
A code example can be found here: <gh-file:examples/offline_inference/embed_matryoshka_fy.py>
### Online Inference
Use the following command to start vllm server.
```text
vllm serve jinaai/jina-embeddings-v3 --trust-remote-code
```
You can change the output dimensions of embedding models that support Matryoshka Embeddings by using the dimensions parameter.
```text
curl http://127.0.0.1:8000/v1/embeddings \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"input": "Follow the white rabbit.",
"model": "jinaai/jina-embeddings-v3",
"encoding_format": "float",
"dimensions": 1
}'
```
Expected output:
```json
{"id":"embd-0aab28c384d348c3b8f0eb783109dc5f","object":"list","created":1744195454,"model":"jinaai/jina-embeddings-v3","data":[{"index":0,"object":"embedding","embedding":[-1.0]}],"usage":{"prompt_tokens":10,"total_tokens":10,"completion_tokens":0,"prompt_tokens_details":null}}
```
A openai client example can be found here: <gh-file:examples/online_serving/openai_embedding_matryoshka_fy.py>

View File

@ -0,0 +1,36 @@
# SPDX-License-Identifier: Apache-2.0
"""Example Python client for embedding API dimensions using vLLM API server
NOTE:
start a supported Matryoshka Embeddings model server with `vllm serve`, e.g.
vllm serve jinaai/jina-embeddings-v3 --trust-remote-code
"""
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
def main():
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
responses = client.embeddings.create(
input=["Follow the white rabbit."],
model=model,
dimensions=1,
)
for data in responses.data:
print(data.embedding) # List of float of len 1
if __name__ == "__main__":
main()