Add GPTQ support (#916)

This commit is contained in:
CHU Tianxiang 2023-12-15 19:04:22 +08:00 committed by GitHub
parent c06170cc8e
commit 0fbfc4b81b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 1782 additions and 82 deletions

View File

@ -84,7 +84,7 @@ if __name__ == '__main__':
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'squeezellm', None],
choices=['awq', 'gptq', 'squeezellm', None],
default=None)
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--input-len', type=int, default=32)

View File

@ -244,7 +244,7 @@ if __name__ == "__main__":
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
'-q',
choices=['awq', 'squeezellm', None],
choices=['awq', 'gptq', 'squeezellm', None],
default=None)
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n",

View File

@ -77,3 +77,15 @@ void squeezellm_gemm(
torch::Tensor mat,
torch::Tensor mul,
torch::Tensor lookup_table);
torch::Tensor gptq_gemm(
torch::Tensor a,
torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama);
void gptq_shuffle(
torch::Tensor q_weight,
torch::Tensor q_perm);

View File

@ -52,8 +52,8 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
// Quantization ops
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
#endif
ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ");
ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ");
ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM");
// Cache ops

View File

@ -0,0 +1,64 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _compat_cuh
#define _compat_cuh
namespace vllm {
namespace gptq {
// atomicAdd for half types, to support CC < 7.x
__device__ __forceinline__ void atomicAdd_half(half* address, half val)
{
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
__half_raw hsum;
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
half tmpres = __hadd(hsum, val);
hsum = __half_raw(tmpres);
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
old = atomicCAS(address_as_ui, assumed, old);
}
while (assumed != old);
}
// atomicAdd for half2 types
__device__ __forceinline__ void atomicAdd_half2(half2* address, half2 val)
{
unsigned int* address_as_ui = (unsigned int*)address;
unsigned int old = *address_as_ui;
unsigned int assumed;
do
{
assumed = old;
half2 old_val = *((half2*)&old);
half2 new_val = __hadd2(old_val, val);
old = atomicCAS(address_as_ui, assumed, *((unsigned int*)&new_val));
}
while (assumed != old);
}
//
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
#if __CUDA_ARCH__ < 700 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half* address, half val) { atomicAdd_half(address, val); }
#if __CUDA_ARCH__ < 600 || defined(USE_ROCM)
__device__ __forceinline__ void atomicAdd(half2* address, half2 val) { atomicAdd_half2(address, val); }
#endif
#endif
#endif
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,151 @@
/*
Adapted from https://github.com/turboderp/exllamav2 and https://github.com/turboderp/exllama
*/
#ifndef _matrix_view_cuh
#define _matrix_view_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
class MatrixView_half
{
public:
const half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half(const half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half2 item_half2half2(int row, int column) const { return __half2half2(data[row * width + column]); }
__device__ __forceinline__ const half* item_ptr(int row, int column) const { return &data[row * width + column]; }
__device__ __forceinline__ void item4(half (&items)[4], int row, int column) const
{
half2* ptr = (half2*) item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __low2half(i01);
items[1] = __high2half(i01);
items[2] = __low2half(i23);
items[3] = __high2half(i23);
}
__device__ __forceinline__ void item4_f(float (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2float(__low2half(i01));
items[1] = __half2float(__high2half(i01));
items[2] = __half2float(__low2half(i23));
items[3] = __half2float(__high2half(i23));
}
__device__ __forceinline__ void item4_h2(half2 (&items)[4], int row, int column) const
{
half2* ptr = (half2*)item_ptr(row, column);
half2 i01 = ptr[0];
half2 i23 = ptr[1];
items[0] = __half2half2(__low2half(i01));
items[1] = __half2half2(__high2half(i01));
items[2] = __half2half2(__low2half(i23));
items[3] = __half2half2(__high2half(i23));
}
};
class MatrixView_half_rw
{
public:
half* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_half_rw(half* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ half item(int row, int column) const { return data[row * width + column]; }
__device__ __forceinline__ half2 item_half2(int row, int column) const { return ((half2*)data)[(row * width + column) / 2]; }
__device__ __forceinline__ half* item_ptr(int row, int column) { return &data[row * width + column]; }
__device__ __forceinline__ void set(int row, int column, half value) { data[row * width + column] = value; }
__device__ __forceinline__ void set_half2(int row, int column, half2 value) { ((half2*)data)[(row * width + column) / 2] = value; }
__device__ __forceinline__ void set4(int row, int column, half v0, half v1, half v2, half v3)
{
half2 v01 = __halves2half2(v0, v1);
half2 v23 = __halves2half2(v2, v3);
half2* ptr = (half2*) item_ptr(row, column);
ptr[0] = v01;
ptr[1] = v23;
}
};
class MatrixView_q4_row
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_row(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (column & 0x07) * 4;
return (data[row * width / 8 + column / 8] >> shift) & 0x0f;
}
__device__ __forceinline__ void item2(int (&items)[2], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
}
__device__ __forceinline__ void item4(int (&items)[4], int row, int column) const
{
int shift = (column & 0x07) * 4;
uint32_t d = data[row * width / 8 + column / 8] >> shift;
items[0] = d & 0x0f;
items[1] = (d >> 4) & 0x0f;
items[2] = (d >> 8) & 0x0f;
items[3] = (d >> 12) & 0x0f;
}
};
class MatrixView_q4_column
{
public:
const uint32_t* data;
const int height;
const int width;
__device__ __forceinline__ MatrixView_q4_column(const uint32_t* data, const int height, const int width)
: data(data), height(height), width(width)
{ }
__device__ __forceinline__ int item(int row, int column) const
{
int shift = (row & 0x07) * 4;
return (data[row / 8 * width + column] >> shift) & 0x0f;
}
__device__ __forceinline__ uint32_t item_uint32_t(int row, int column) { return data[row / 8 * width + column]; }
__device__ __forceinline__ const uint32_t* item_uint32_ptr(int row, int column) { return &data[row / 8 * width + column]; }
};
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,859 @@
/*
Adapted from https://github.com/turboderp/exllamav2 and https://github.com/qwopqwop200/GPTQ-for-LLaMa
*/
#include <cstdint>
#include <cstdio>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "compat.cuh"
#include "matrix_view.cuh"
#include "qdq_4.cuh"
namespace vllm {
namespace gptq {
#define BLOCK_KN_SIZE 128
#define BLOCK_M_SIZE_MAX 8
#define MAX_GROUPS_IN_BLOCK (BLOCK_KN_SIZE / 32)
#define MAX_Q_GEMM_ROWS 50
#define MAX_ALT_GEMM_ROWS 8
#define THREADS_X 32
#define THREADS_Y 32
#define DIVIDE(x, size) (((x) + (size) - 1) / (size))
#if defined(USE_ROCM)
__host__ __forceinline__ hipblasStatus_t __compat_hipblasHgemm(hipblasHandle_t handle,
hipblasOperation_t transA,
hipblasOperation_t transB,
int m,
int n,
int k,
const half* alpha,
const half* AP,
int lda,
const half* BP,
int ldb,
const half* beta,
half* CP,
int ldc) {
return hipblasHgemm(handle, transA, transB, m, n, k,
reinterpret_cast<const hipblasHalf *>(alpha),
reinterpret_cast<const hipblasHalf *>(AP), lda,
reinterpret_cast<const hipblasHalf *>(BP), ldb,
reinterpret_cast<const hipblasHalf *>(beta),
reinterpret_cast<hipblasHalf *>(CP), ldc);
}
#define hipblasHgemm __compat_hipblasHgemm
// Previous version of PyTorch were converting to rocBLAS instead of hipBLAS.
#define rocblas_operation_none HIPBLAS_OP_N
#define rocblas_hgemm __compat_hipblasHgemm
#endif
__forceinline__ __device__ half2 dot22_8(half2(&dq)[4], const half* a_ptr, const half2 g_result)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hadd2(result, g_result);
}
__forceinline__ __device__ float dot22_8_f(half2(&dq)[4], const half* a_ptr)
{
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __half2float(__low2half(result)) + __half2float(__high2half(result));
}
typedef void (*fp_gemm_half_q_half_gptq_kernel)
(
const half*,
const uint32_t*,
const uint32_t*,
const half*,
half*,
const int,
const int,
const int,
const int,
const int*
);
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_kernel
(
const half* __restrict__ a,
const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales,
half* __restrict__ c,
const int size_m,
const int size_n,
const int size_k,
const int groups,
const int* __restrict__ b_q_perm
)
{
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k)
{
for (int m = 0; m < m_count; ++m)
{
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0;
if (b_q_perm) a0 = a_ptr[b_q_perm[offset_k + t]];
else a0 = a_ptr[offset_k + t];
block_a_ptr[t] = a0;
}
}
// Zero output
if (n >= size_n) return;
if (blockIdx.z == 0)
{
for (int m = 0; m < m_count; m++)
*((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// a, b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int zeros[4];
float scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
// Column result
float block_c[m_count][4] = {};
// Dequantize and multiply
int k = offset_k;
while (k < end_k)
{
if (k == nextgroup)
{
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
#pragma unroll
for (int j = 0; j < 4; j++)
{
const int4* b_ptr4 = (int4*) b_ptr;
int4 load_int4 = *b_ptr4;
half2 dq[4][4];
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);
#pragma unroll
for (int m = 0; m < m_count; m++)
{
block_c[m][0] = fma(dot22_8_f(dq[0], a_ptr + m * a_stride), scales[0], block_c[m][0]);
block_c[m][1] = fma(dot22_8_f(dq[1], a_ptr + m * a_stride), scales[1], block_c[m][1]);
block_c[m][2] = fma(dot22_8_f(dq[2], a_ptr + m * a_stride), scales[2], block_c[m][2]);
block_c[m][3] = fma(dot22_8_f(dq[3], a_ptr + m * a_stride), scales[3], block_c[m][3]);
}
b_ptr += size_n;
a_ptr += 8;
}
k += 32;
}
for (int m = 0; m < m_count; m++)
{
half2 *out = (half2*) c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(__float2half_rn(block_c[m][0]), __float2half_rn(block_c[m][1]));
half2 result23 = __halves2half2(__float2half_rn(block_c[m][2]), __float2half_rn(block_c[m][3]));
atomicAdd(out , result01);
atomicAdd(out + 1, result23);
}
}
fp_gemm_half_q_half_gptq_kernel pick_gemm_half_q_half_gptq_kernel(bool first_block, const int m_count)
{
#if BLOCK_M_SIZE_MAX >= 1
if (m_count == 1) return gemm_half_q_half_gptq_kernel<true, 1>;
#endif
#if BLOCK_M_SIZE_MAX >= 2
if (m_count == 2) return gemm_half_q_half_gptq_kernel<true, 2>;
#endif
#if BLOCK_M_SIZE_MAX >= 3
if (m_count == 3) return gemm_half_q_half_gptq_kernel<true, 3>;
#endif
#if BLOCK_M_SIZE_MAX >= 4
if (m_count == 4) return gemm_half_q_half_gptq_kernel<true, 4>;
#endif
#if BLOCK_M_SIZE_MAX >= 5
if (m_count == 5) return gemm_half_q_half_gptq_kernel<true, 5>;
#endif
#if BLOCK_M_SIZE_MAX >= 6
if (m_count == 6) return gemm_half_q_half_gptq_kernel<true, 6>;
#endif
#if BLOCK_M_SIZE_MAX >= 7
if (m_count == 7) return gemm_half_q_half_gptq_kernel<true, 7>;
#endif
#if BLOCK_M_SIZE_MAX >= 8
if (m_count == 8) return gemm_half_q_half_gptq_kernel<true, 8>;
#endif
return NULL;
}
void gemm_half_q_half_cuda_part
(
const half* a,
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_q_perm,
half* c,
int size_m,
int size_n,
int size_k,
int m_count,
int groups
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
gridDim.y = DIVIDE(size_m, m_count);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
fp_gemm_half_q_half_gptq_kernel kernel = pick_gemm_half_q_half_gptq_kernel(true, m_count);
kernel<<<gridDim, blockDim>>>
(
a,
b_q_weight,
b_gptq_qzeros,
b_gptq_scales,
c,
size_m,
size_n,
size_k,
groups,
b_q_perm
);
}
__global__ void reconstruct_exllama_kernel
(
const uint32_t* __restrict__ b_q_weight,
const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales,
const int size_k,
const int size_n,
const int groups,
half* __restrict__ b
)
{
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
// Preload remapping table
__shared__ int perm[BLOCK_KN_SIZE];
int t = threadIdx.x;
if (b_q_perm)
{
if (offset_k + t < size_k)
perm[t] = b_q_perm[offset_k + t];
}
// Column
int n = offset_n + t * 4;
if (n >= size_n) return;
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
// Initial zeros/scale
int zeros[4];
half2 scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
__syncthreads();
int k = offset_k;
int lk = 0;
while (k < end_k)
{
if (k == nextgroup)
{
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
for (int p = 0; p < 4; p++)
{
half2 dq[4][4];
const int4* b_ptr4 = (int4*) b_ptr;
int4 load_int4 = *b_ptr4;
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);
b_ptr += size_n;
//half* dqh = (half*)dq;
if (b_q_perm)
{
for (int j = 0; j < 4; j++)
{
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
}
}
else
{
for (int j = 0; j < 4; j++)
{
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(offset_k + lk++, n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(offset_k + lk++, n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
}
}
}
k += 32;
}
}
void reconstruct_exllama
(
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_q_perm,
half* out,
int height,
int width,
int groups
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.y = DIVIDE(height, BLOCK_KN_SIZE);
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
reconstruct_exllama_kernel<<<gridDim, blockDim>>>
(
b_q_weight,
b_q_perm,
b_gptq_qzeros,
b_gptq_scales,
height,
width,
groups,
out
);
}
__global__ void gemm_half_q_half_alt_kernel(
const half2* __restrict__ vec,
const uint32_t* __restrict__ mat,
half* __restrict__ mul,
const half* __restrict__ scales,
const uint32_t* __restrict__ zeros,
const int* __restrict__ g_idx,
int batch,
int height,
int width
)
{
int zero_width = width / 8;
int vec_height = height * 4;
const int blockwidth2 = BLOCK_KN_SIZE / 2;
int b = blockIdx.y * BLOCK_M_SIZE_MAX;
int b_end = min(BLOCK_M_SIZE_MAX, batch - b);
int h = BLOCK_KN_SIZE * blockIdx.z / 8;
int h_end = min(BLOCK_KN_SIZE / 8, height - h) * 4;
int w = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
__shared__ half2 blockvec[BLOCK_M_SIZE_MAX][blockwidth2];
if (threadIdx.x < h_end) {
for (int m = 0; m < b_end; ++m) {
blockvec[m][threadIdx.x] =
vec[(m + b) * vec_height + blockIdx.z * BLOCK_KN_SIZE / 2 +
threadIdx.x];
}
}
__shared__ half2 deq2[256][8];
int val = threadIdx.x / 8;
int off = threadIdx.x % 8;
for (; val < 256; val += BLOCK_KN_SIZE / 8) {
deq2[val][off] = __halves2half2(
__int2half_rn(val & 0xF), __int2half_rn(val >> 4)
);
}
if (blockIdx.z == 0)
{
for (int m = 0; m < b_end; m++)
mul[(b + m) * width + w] = __int2half_rn(0);
}
__syncthreads();
int i = width * h + w;
int g_h = h * 8;
int k = 0;
int z_w = w / 8;
int z_mod = (w % 8) * 4;
half2 res2;
half res[BLOCK_M_SIZE_MAX] = {};
unsigned int tmp;
while (k < h_end) {
tmp = mat[i];
half2 scales_tmp[4];
half2 zeros_tmp[4];
for (int tmp_k = 0; tmp_k < 4; tmp_k++) {
int g = g_idx[g_h + (k + tmp_k) * 2];
int g2 = g_idx[g_h + (k + tmp_k) * 2 + 1];
half scale_f = scales[g * width + w];
half scale_f2 = scales[g2 * width + w];
half2 scale = __halves2half2(scale_f, scale_f2);
half2 zero = __halves2half2(
__hmul(scale_f, __int2half_rn(-((zeros[g * zero_width + z_w] >> z_mod) & 0xF) - 1)),
__hmul(scale_f2, __int2half_rn(-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xF) - 1))
);
scales_tmp[tmp_k] = scale;
zeros_tmp[tmp_k] = zero;
}
for (int m = 0; m < b_end; m++) {
res2 = {};
res2 = __hfma2(__hfma2(deq2[(tmp >> 0) & 0xff][off], scales_tmp[0], zeros_tmp[0]), blockvec[m][k + 0], res2);
res2 = __hfma2(__hfma2(deq2[(tmp >> 8) & 0xff][off], scales_tmp[1], zeros_tmp[1]), blockvec[m][k + 1], res2);
res2 = __hfma2(__hfma2(deq2[(tmp >> 16) & 0xff][off], scales_tmp[2], zeros_tmp[2]), blockvec[m][k + 2], res2);
res2 = __hfma2(__hfma2(deq2[(tmp >> 24) & 0xff][off], scales_tmp[3], zeros_tmp[3]), blockvec[m][k + 3], res2);
res[m] = __hadd(res[m], __hadd(res2.x, res2.y));
}
i += width;
k += 4;
}
for (int m = 0; m < b_end; m++) {
atomicAdd(&mul[(b + m) * width + w], res[m]);
}
}
void gemm_half_q_half_alt
(
const half* a,
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_g_idx,
half* c,
int size_m,
int size_n,
int size_k
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE);
gridDim.y = DIVIDE(size_m, BLOCK_M_SIZE_MAX);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
gemm_half_q_half_alt_kernel<<<gridDim, blockDim>>>
(
(const half2*) a,
b_q_weight,
c,
b_gptq_scales,
b_gptq_qzeros,
b_g_idx,
size_m,
size_k / 8,
size_n
);
}
__global__ void reconstruct_gptq_kernel
(
const uint32_t* __restrict__ w,
const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros,
const int* __restrict__ g_idx,
const int height,
const int width,
const int group,
half* __restrict__ out
)
{
// Start of block
int column = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
int row = blockIdx.y * 8;
if (column >= width) return;
// Views
MatrixView_q4_column w_(w, height, width);
MatrixView_half_rw out_(out, height, width);
MatrixView_half w_scales_(w_scales, group, width);
MatrixView_q4_row w_zeros_(w_zeros, group, width);
uint32_t w_read = w_.item_uint32_t(row, column);
half* out_ptr = out_.item_ptr(row, column);
#pragma unroll
for (int s = 0; s < 32; s += 4)
{
int group = g_idx[row + s / 4];
half w_scale = w_scales_.item(group, column);
uint32_t w_zero = w_zeros_.item(group, column) + 1;
half w_item = __hmul(__int2half_rn((int)((w_read >> s) & 0x0f) - w_zero), w_scale);
*out_ptr = w_item; out_ptr += out_.width;
}
}
void reconstruct_gptq
(
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_g_idx,
half* out,
int height,
int width,
int groups
)
{
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.y = DIVIDE(height, 8);
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
reconstruct_gptq_kernel<<<gridDim, blockDim>>>
(
b_q_weight,
b_gptq_scales,
b_gptq_qzeros,
b_g_idx,
height,
width,
groups,
out
);
}
void gemm_half_q_half_cuda
(
cublasHandle_t cublas_handle,
const half* a,
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales,
const int* b_g_idx,
half* c,
half* temp_dq,
int size_m,
int size_n,
int size_k,
int groups,
bool use_exllama
)
{
if ((use_exllama && size_m > MAX_Q_GEMM_ROWS) || (!use_exllama && size_m > MAX_ALT_GEMM_ROWS)) {
// Reconstruct FP16 matrix, then cuBLAS
if (use_exllama) {
reconstruct_exllama(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx, temp_dq,
size_k, size_n, groups);
}
else
{
reconstruct_gptq(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
temp_dq, size_k, size_n, groups);
}
const half alpha = __float2half(1.0f);
const half beta = __float2half(0.0f);
cublasHgemm(cublas_handle,
CUBLAS_OP_N,
CUBLAS_OP_N,
size_n, size_m, size_k,
&alpha, temp_dq, size_n,
a, size_k,
&beta, c, size_n);
}
else if (use_exllama)
{
// Quantized matmul
int max_chunks = size_m / BLOCK_M_SIZE_MAX;
int last_chunk = max_chunks * BLOCK_M_SIZE_MAX;
int last_chunk_size = size_m - last_chunk;
if (max_chunks)
{
gemm_half_q_half_cuda_part(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
c, last_chunk, size_n, size_k, BLOCK_M_SIZE_MAX,
groups);
}
if (last_chunk_size)
{
gemm_half_q_half_cuda_part(a + last_chunk * size_k, b_q_weight, b_gptq_qzeros,
b_gptq_scales, b_g_idx, c + last_chunk * size_n,
last_chunk_size, size_n, size_k, last_chunk_size,
groups);
}
}
else
{
gemm_half_q_half_alt(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
c, size_m, size_n, size_k);
}
}
__global__ void shuffle_kernel
(
uint32_t* __restrict__ b_q_weight,
const int size_k,
const int size_n
)
{
int n = blockIdx.x * THREADS_X + threadIdx.x;
if (n >= size_n) return;
int k = 0;
uint32_t* b_ptr = b_q_weight + n;
while (k < size_k) { shuffle_4bit_8 (b_ptr, size_n); b_ptr += 1 * size_n; k += 8; }
}
__global__ void make_sequential_kernel
(
const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const int* __restrict__ q_perm,
const int w_height,
const int w_width
)
{
const uint64_t* w2 = (uint64_t*) w;
uint64_t* w_new2 = (uint64_t*) w_new;
int w2_stride = w_width >> 1;
int w2_column = THREADS_X * blockIdx.x + threadIdx.x;
if (w2_column >= w2_stride) return;
int w_new2_row = blockIdx.y;
int q_perm_idx = w_new2_row << 3;
uint64_t dst = 0;
#pragma unroll
for (int i = 0; i < 8; i++)
{
int source_row = q_perm[q_perm_idx++];
int w2_row = source_row >> 3;
int w2_subrow = source_row & 0x07;
int w2_row_shift = w2_subrow << 2;
int wnew2_row_shift = i << 2;
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x0000000f0000000f;
src <<= wnew2_row_shift;
dst |= src;
}
w_new2[w_new2_row * w2_stride + w2_column] = dst;
}
void shuffle_exllama_weight
(
uint32_t* q_weight,
int* q_perm,
int height,
int width
)
{
if (q_perm)
{
uint32_t* new_qweight = NULL;
cudaMalloc(&new_qweight, height / 8 * width * sizeof(uint32_t));
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = height / 8;
make_sequential_kernel<<<gridDim, blockDim>>>
(
q_weight,
new_qweight,
q_perm,
height / 8,
width
);
// Replace qweights
cudaMemcpyAsync(q_weight, new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice);
// Cleanup
cudaDeviceSynchronize();
cudaFree(new_qweight);
}
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = 1;
shuffle_kernel<<<gridDim, blockDim>>>(q_weight, height, width);
}
} // namespace gptq
} // namespace vllm
torch::Tensor gptq_gemm
(
torch::Tensor a,
torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales,
torch::Tensor b_g_idx,
bool use_exllama
)
{
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
at::Tensor c = torch::empty({a.size(0), b_q_weight.size(1)}, options);
at::Tensor temp_dq = torch::empty({b_q_weight.size(0) * 8, b_q_weight.size(1)}, options);
vllm::gptq::gemm_half_q_half_cuda
(
at::cuda::getCurrentCUDABlasHandle(),
(const half*) a.data_ptr(),
(const uint32_t*) b_q_weight.data_ptr(),
(const uint32_t*)b_gptq_qzeros.data_ptr(),
(const half*) b_gptq_scales.data_ptr(),
b_g_idx.device().is_meta() ? NULL : (const int*) b_g_idx.data_ptr(),
(half*) c.data_ptr(),
(half*) temp_dq.data_ptr(),
c.size(0), // m
c.size(1), // n
a.size(1), // k
b_gptq_qzeros.size(0), // group number
use_exllama
);
return c;
}
void gptq_shuffle
(
torch::Tensor q_weight,
torch::Tensor q_perm
)
{
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_weight));
vllm::gptq::shuffle_exllama_weight(
(uint32_t*) q_weight.data_ptr(),
q_perm.device().is_meta() ? NULL : (int*) q_perm.data_ptr(),
q_weight.size(0) * 8,
q_weight.size(1)
);
}

View File

@ -0,0 +1,235 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_4_cuh
#define _qdq_4_cuh
#include "qdq_util.cuh"
namespace vllm {
namespace gptq {
// Permutation:
//
// 77775555 33331111 66664444 22220000
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
uint32_t qa = q[0];
uint32_t qb = 0;
#pragma unroll
for (int i = 0; i < 4; i++)
{
uint32_t qa0 = qa & 0x0f;
uint32_t qa1 = (qa & 0xf0) >> 4;
qa >>= 8;
qb |= (qa1 << (i * 4 + 16));
qb |= (qa0 << (i * 4));
}
q[0] = qb;
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
)
{
const uint32_t c0 = 0x64006400;
const half y16_ = __float2half_rn(1.0f / 16.0f);
const half2 y16 = __halves2half2(y16_, y16_);
const half z1_ = __float2half_rn(-1024.0f - 8.0f);
const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f);
const half2 z1 = __halves2half2(z1_, z1_);
const half2 z16 = __halves2half2(z16_, z16_);
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2(q[ 2], q[ 3]) * 16 + 1024
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2(q[ 4], q[ 5]) + 1024
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2(q[ 6], q[ 7]) * 16 + 1024
dq[0] = __hadd2(q0.as_half2, z1);
dq[1] = __hfma2(q1.as_half2, y16, z16);
dq[2] = __hadd2(q2.as_half2, z1);
dq[3] = __hfma2(q3.as_half2, y16, z16);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1z16)[2],
half2 (&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
half2 scale2 = __half2half2(scale);
z1z16[0] = __hmul2(scale2, __half2half2(z1.as_half));
z1z16[1] = __hmul2(scale2, __half2half2(z16));
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __hmul2(scale2, __half2half2(y1));
y1y16[1] = __hmul2(scale2, __half2half2(y16));
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1z16)[2],
half2(&y1y16)[2]
)
{
half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero);
half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero));
z1z16[0] = __half2half2(z1.as_half);
z1z16[1] = __half2half2(z16);
const half y1 = __float2half_rn(1.0f);
const half y16 = __float2half_rn(1.0f / 16.0f);
y1y16[0] = __half2half2(y1);
y1y16[1] = __half2half2(y16);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1z16)[2],
half2 (&y1y16)[2],
int stride,
bool scaled
)
{
const uint32_t c0 = 0x64006400;
uint32_t qa = q_0;
half2_uint32 q0((qa & 0x000f000f) | c0); // half2( q[0] + 1024, q[1] + 1024 )
half2_uint32 q1((qa & 0x00f000f0) | c0); // half2( q[2] * 16 + 1024, q[3] * 16 + 1024 )
qa >>= 8;
half2_uint32 q2((qa & 0x000f000f) | c0); // half2( q[4] + 1024, q[5] + 1024 )
half2_uint32 q3((qa & 0x00f000f0) | c0); // half2( q[6] * 16 + 1024, q[7] * 16 + 1024 )
if (scaled)
{
dq[0] = __hfma2(q0.as_half2, y1y16[0], z1z16[0]); // half2( q[0] * s - z * s, q[1] * s - z * s)
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] * s - z * s, q[3] * s - z * s)
dq[2] = __hfma2(q2.as_half2, y1y16[0], z1z16[0]);
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]);
}
else
{
dq[0] = __hadd2(q0.as_half2, z1z16[0]); // half2( q[0] - z, q[1] - z )
dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] - z, q[3] - z )
dq[2] = __hadd2(q2.as_half2, z1z16[0]); // half2( q[4] - z, q[5] - z )
dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); // half2( q[6] - z, q[7] - z )
}
}
} // namespace gptq
} // namespace vllm
#else
namespace vllm {
namespace gptq {
__forceinline__ __device__ void shuffle_4bit_8
(
uint32_t* q,
int stride
)
{
}
__forceinline__ __device__ void dequant_4bit_8
(
const uint32_t q_0,
half2 (&dq)[4],
int stride
)
{
half dqh[8];
for (int i = 0; i < 8; i++) dqh[i] = dq_ns(exb(q_0, i * 4, 0x0f), 8);
for (int i = 0; i < 4; i++) dq[i] = __halves2half2(dqh[i * 2], dqh[i * 2 + 1]);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero_scale
(
const uint32_t zero,
const half scale,
half2 (&z1)[2],
half2 (&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z = __hmul(z, scale);
z1[0] = __half2half2(z);
y1[0] = __half2half2(scale);
}
__forceinline__ __device__ void dequant_4bit_8_prep_zero
(
const uint32_t zero,
half2(&z1)[2],
half2(&y1)[2]
)
{
half z = __int2half_rn(-((int)zero));
z1[0] = __half2half2(z);
}
__forceinline__ __device__ void dequant_4bit_8_gptq
(
const uint32_t q_0,
half2 (&dq)[4],
half2 (&z1)[2],
half2 (&y1)[2],
int stride,
bool scaled
)
{
half2 dqh2[8];
uint32_t qa = q_0;
for (int i = 0; i < 4; i++)
{
half d0 = __int2half_rn(qa & 0x0f); qa >>= 4;
half d1 = __int2half_rn(qa & 0x0f); qa >>= 4;
dqh2[i] = __halves2half2(d0, d1);
}
if (scaled)
{
dq[0] = __hfma2(dqh2[0], y1[0], z1[0]);
dq[1] = __hfma2(dqh2[1], y1[0], z1[0]);
dq[2] = __hfma2(dqh2[2], y1[0], z1[0]);
dq[3] = __hfma2(dqh2[3], y1[0], z1[0]);
}
else
{
dq[0] = __hadd2(dqh2[0], z1[0]);
dq[1] = __hadd2(dqh2[1], z1[0]);
dq[2] = __hadd2(dqh2[2], z1[0]);
dq[3] = __hadd2(dqh2[3], z1[0]);
}
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -0,0 +1,60 @@
/*
Copied from https://github.com/turboderp/exllamav2
*/
#ifndef _qdq_util_cuh
#define _qdq_util_cuh
namespace vllm {
namespace gptq {
union half2_uint32
{
uint32_t as_uint32;
half2 as_half2;
__device__ half2_uint32(uint32_t val) : as_uint32(val) {}
__device__ half2_uint32(half2 val) : as_half2(val) {}
};
union half_uint16
{
uint16_t as_uint16;
half as_half;
__device__ half_uint16(uint16_t val) : as_uint16(val) {}
__device__ half_uint16(half val) : as_half(val) {}
};
// Max_scale premultiplied by 1/256
__forceinline__ __device__ half dq_scale(const int qs, const half max_scale)
{
int qs_i = qs + 1;
half qs_h = __int2half_rn(qs_i * qs_i);
qs_h = __hmul(qs_h, max_scale);
return qs_h;
}
__forceinline__ __device__ half dq(const int q, const int qzero, const half scale)
{
return __hmul(__int2half_rn(q - qzero), scale);
}
__forceinline__ __device__ half dq_ns(const int q, const int qzero)
{
//return __hsub(__int2half_rn(q), __int2half_rn(qzero));
return __int2half_rn(q - qzero);
}
__forceinline__ __device__ int exb(const uint32_t q, const int shift, const int mask)
{
return (int)((q >> shift) & mask);
}
__forceinline__ __device__ int exb(const uint32_t q1, const uint32_t q0, const int shift, const int mask)
{
return (int)(__funnelshift_rc(q0, q1, shift) & mask);
}
} // namespace gptq
} // namespace vllm
#endif

View File

@ -219,6 +219,7 @@ vllm_extension_sources = [
"csrc/activation_kernels.cu",
"csrc/layernorm_kernels.cu",
"csrc/quantization/squeezellm/quant_cuda_kernel.cu",
"csrc/quantization/gptq/q_gemm.cu",
"csrc/cuda_utils_kernels.cu",
"csrc/pybind.cpp",
]

View File

@ -142,7 +142,7 @@ class ModelConfig:
self.tokenizer_mode = tokenizer_mode
def _verify_quantization(self) -> None:
supported_quantization = ["awq", "squeezellm"]
supported_quantization = ["awq", "gptq", "squeezellm"]
rocm_not_supported_quantization = ["awq"]
if self.quantization is not None:
self.quantization = self.quantization.lower()

View File

@ -179,7 +179,7 @@ class EngineArgs:
parser.add_argument('--quantization',
'-q',
type=str,
choices=['awq', 'squeezellm', None],
choices=['awq', 'gptq', 'squeezellm', None],
default=None,
help='Method used to quantize the weights')
return parser

View File

@ -38,8 +38,9 @@ class LLM:
However, if the `torch_dtype` in the config is `float32`, we will
use `float16` instead.
quantization: The method used to quantize the model weights. Currently,
we support "awq". If None, we assume the model weights are not
quantized and use `dtype` to determine the data type of the weights.
we support "awq", "gptq" and "squeezellm". If None, we assume the
model weights are not quantized and use `dtype` to determine the
data type of the weights.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id.
tokenizer_revision: The specific tokenizer version to use. It can be a

View File

@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Dict, List, Optional
from typing import Any, Dict, List, Optional
import torch
import torch.nn.functional as F
@ -21,8 +21,10 @@ class LinearMethodBase(ABC):
"""Base class for different (maybe quantized) linear methods."""
@abstractmethod
def create_weights(self, input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, torch.Tensor]:
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
"""Create weights for a linear layer."""
raise NotImplementedError
@ -46,10 +48,12 @@ class UnquantizedLinearMethod(LinearMethodBase):
def __init__(self, separate_bias_add: bool = False):
self.separate_bias_add = separate_bias_add
def create_weights(self, input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, torch.Tensor]:
weight = Parameter(torch.empty(output_size,
input_size,
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
weight = Parameter(torch.empty(output_size_per_partition,
input_size_per_partition,
device=torch.cuda.current_device(),
dtype=params_dtype),
requires_grad=False)
@ -102,9 +106,11 @@ class ReplicatedLinear(torch.nn.Module):
linear_method = UnquantizedLinearMethod()
self.linear_method = linear_method
self.linear_weights = self.linear_method.create_weights(
self.input_size, self.output_size, self.params_dtype)
self.input_size, self.output_size, self.input_size,
self.output_size, self.params_dtype)
for name, weight in self.linear_weights.items():
self.register_parameter(name, weight)
if isinstance(weight, torch.Tensor):
self.register_parameter(name, weight)
if bias:
self.bias = Parameter(
torch.empty(self.output_size,
@ -168,10 +174,12 @@ class ColumnParallelLinear(torch.nn.Module):
linear_method = UnquantizedLinearMethod()
self.linear_method = linear_method
self.linear_weights = self.linear_method.create_weights(
self.input_size, self.output_size_per_partition, self.params_dtype)
self.input_size, self.output_size_per_partition, self.input_size,
self.output_size, self.params_dtype)
for name, weight in self.linear_weights.items():
self.register_parameter(name, weight)
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
if isinstance(weight, torch.Tensor):
self.register_parameter(name, weight)
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
if bias:
self.bias = Parameter(
torch.empty(self.output_size_per_partition,
@ -295,10 +303,12 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
else:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"MergedColumnParallelLinear, assume the weight is "
"the same for all partitions.")
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"MergedColumnParallelLinear, assume the weight is "
"the same for all partitions.")
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
@ -418,10 +428,12 @@ class QKVParallelLinear(ColumnParallelLinear):
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
else:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"QKVParallelLinear, assume the weight is the same "
"for all partitions.")
ignore_warning = getattr(param, "ignore_warning", False)
if not ignore_warning:
logger.warning(
"Loading a weight without `output_dim` attribute in "
"QKVParallelLinear, assume the weight is the same "
"for all partitions.")
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
@ -481,10 +493,12 @@ class RowParallelLinear(torch.nn.Module):
linear_method = UnquantizedLinearMethod()
self.linear_method = linear_method
self.linear_weights = self.linear_method.create_weights(
self.input_size_per_partition, self.output_size, self.params_dtype)
self.input_size_per_partition, self.output_size, self.input_size,
self.output_size, self.params_dtype)
for name, weight in self.linear_weights.items():
self.register_parameter(name, weight)
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
if isinstance(weight, torch.Tensor):
self.register_parameter(name, weight)
set_weight_attrs(weight, {"weight_loader": self.weight_loader})
if not reduce_results and (bias and not skip_bias_add):
raise ValueError("When not reduce the results, adding bias to the "

View File

@ -1,11 +1,13 @@
from typing import Type
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig
_QUANTIZATION_CONFIG_REGISTRY = {
"awq": AWQConfig,
"gptq": GPTQConfig,
"squeezellm": SqueezeLLMConfig,
}

View File

@ -77,14 +77,16 @@ class AWQLinearMethod(LinearMethodBase):
def __init__(self, quant_config: AWQConfig):
self.quant_config = quant_config
def create_weights(self, input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, torch.Tensor]:
if input_size % self.quant_config.group_size != 0:
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
if input_size_per_partition % self.quant_config.group_size != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
if output_size % self.quant_config.pack_factor != 0:
if output_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
"The output size is not aligned with the quantized "
"weight shape. This can be caused by too large "
@ -92,8 +94,8 @@ class AWQLinearMethod(LinearMethodBase):
qweight = Parameter(
torch.empty(
input_size,
output_size // self.quant_config.pack_factor,
input_size_per_partition,
output_size_per_partition // self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
@ -108,8 +110,8 @@ class AWQLinearMethod(LinearMethodBase):
})
qzeros = Parameter(
torch.empty(
input_size // self.quant_config.group_size,
output_size // self.quant_config.pack_factor,
input_size_per_partition // self.quant_config.group_size,
output_size_per_partition // self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
@ -124,8 +126,8 @@ class AWQLinearMethod(LinearMethodBase):
})
scales = Parameter(
torch.empty(
input_size // self.quant_config.group_size,
output_size,
input_size_per_partition // self.quant_config.group_size,
output_size_per_partition,
device="cuda",
dtype=params_dtype,
),
@ -142,7 +144,7 @@ class AWQLinearMethod(LinearMethodBase):
}
def apply_weights(self,
weights: Dict[str, torch.Tensor],
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qweight = weights["qweight"]

View File

@ -0,0 +1,215 @@
import enum
from enum import Enum
from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm._C import ops
from vllm.model_executor.layers.linear import (LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
class GPTQConfig(QuantizationConfig):
"""Config class for GPTQ.
Reference: https://arxiv.org/abs/2210.17323
"""
def __init__(
self,
weight_bits: int,
group_size: int,
desc_act: bool,
) -> None:
self.weight_bits = weight_bits
self.group_size = group_size
self.desc_act = desc_act
self.pack_factor = 32 // self.weight_bits
# exllama kernel v1 only supports 4 bit
if self.weight_bits != 4:
raise ValueError(
"Currently, only 4-bit weight quantization is supported for "
f"GPTQ, but got {self.weight_bits} bits.")
def __repr__(self) -> str:
return (f"GPTQConfig(weight_bits={self.weight_bits}, "
f"group_size={self.group_size}, "
f"desc_act={self.desc_act})")
@classmethod
def get_name(cls) -> str:
return "gptq"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.half]
@classmethod
# Need to figure it out
def get_min_capability(cls) -> int:
return 60
@classmethod
def get_config_filenames(cls) -> List[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "GPTQConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
desc_act = cls.get_from_keys(config, ["desc_act"])
return cls(weight_bits, group_size, desc_act)
def get_linear_method(self) -> "GPTQLinearMethod":
return GPTQLinearMethod(self)
def get_scaled_act_names(self) -> List[str]:
return []
class ExllamaState(Enum):
UNUSED = enum.auto()
UNINITIALIZED = enum.auto()
READY = enum.auto()
class GPTQLinearMethod(LinearMethodBase):
"""Linear method for GPTQ.
Args:
quant_config: The GPTQ quantization config.
"""
def __init__(self, quant_config: GPTQConfig):
self.quant_config = quant_config
def create_weights(
self,
input_size_per_partition: int,
output_size_per_partition: int,
input_size: int,
output_size: int,
params_dtype: torch.dtype,
) -> Dict[str, Any]:
del output_size # Unused.
if input_size_per_partition % self.quant_config.group_size != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
if output_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
"The output size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
exllama_state = ExllamaState.UNINITIALIZED
scale_and_zero_size = input_size // group_size
scale_and_zero_input_dim = None
if input_size != input_size_per_partition and self.quant_config.group_size != -1:
# For act-order models, we cannot use Exllama for row parallel layer
if self.quant_config.desc_act:
exllama_state = ExllamaState.UNUSED
else:
# we need to partition qzeros and scales for exllama kernel
scale_and_zero_size = input_size_per_partition // group_size
scale_and_zero_input_dim = 0
qweight = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight, {
"input_dim": 0,
"output_dim": 1,
"packed_dim": 0,
"pack_factor": self.quant_config.pack_factor,
})
g_idx = Parameter(
torch.tensor(
[
i // self.quant_config.group_size
for i in range(input_size_per_partition)
],
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
# Ignore warning from fused linear layers such as QKVParallelLinear.
set_weight_attrs(g_idx, {"input_dim": 0, "ignore_warning": True})
qzeros = Parameter(
torch.empty(
scale_and_zero_size,
output_size_per_partition // self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qzeros, {
"input_dim": scale_and_zero_input_dim,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
})
scales = Parameter(
torch.empty(
scale_and_zero_size,
output_size_per_partition,
device="cuda",
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(scales, {
"input_dim": scale_and_zero_input_dim,
"output_dim": 1,
})
return {
"qweight": qweight,
"g_idx": g_idx,
"qzeros": qzeros,
"scales": scales,
"exllama_state": exllama_state,
}
def apply_weights(self,
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qweight = weights["qweight"]
out_shape = x.shape[:-1] + (qweight.shape[-1], )
reshaped_x = x.reshape(-1, x.shape[-1])
# exllama needs to shuffle the weight after the weight is loaded
# here we do the shuffle on first forward pass
if weights["exllama_state"] == ExllamaState.UNINITIALIZED:
if self.quant_config.desc_act:
weights["g_idx"] = torch.argsort(weights["g_idx"]).to(
torch.int)
else:
weights["g_idx"] = torch.empty((1, 1), device="meta")
weights["exllama_state"] = ExllamaState.READY
ops.gptq_shuffle(weights["qweight"], weights["g_idx"])
output = ops.gptq_gemm(reshaped_x, weights["qweight"],
weights["qzeros"], weights["scales"],
weights["g_idx"],
weights["exllama_state"] == ExllamaState.READY)
if bias is not None:
output = output + bias
return output.reshape(out_shape)

View File

@ -67,17 +67,19 @@ class SqueezeLLMLinearMethod(LinearMethodBase):
def __init__(self, quant_config: SqueezeLLMConfig):
self.quant_config = quant_config
def create_weights(self, input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, torch.Tensor]:
if input_size % self.quant_config.pack_factor != 0:
def create_weights(self, input_size_per_partition: int,
output_size_per_partition: int, input_size: int,
output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
if input_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape. This can be caused by too large "
"tensor parallel size.")
qweight = Parameter(
torch.empty(
input_size // self.quant_config.pack_factor,
output_size,
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
device="cuda",
dtype=torch.int32,
),
@ -108,7 +110,7 @@ class SqueezeLLMLinearMethod(LinearMethodBase):
}
def apply_weights(self,
weights: Dict[str, torch.Tensor],
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
qweight = weights["qweight"]

View File

@ -332,11 +332,18 @@ class AquilaForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -355,11 +355,18 @@ class BaiChuanBaseForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -377,6 +377,9 @@ class ChatGLMForCausalLM(nn.Module):
continue
if "word_embeddings" in name:
name = name.replace(".word_embeddings", "")
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -425,27 +425,32 @@ class FalconForCausalLM(nn.Module):
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
if "query_key_value" in name:
output_dim = getattr(param, "output_dim", None)
loaded_weight_shape = loaded_weight.shape
loaded_weight = loaded_weight.view(
loaded_weight_shape[:output_dim] +
(total_num_kv_heads, num_query_heads_per_kv_head + 2, -1) +
loaded_weight_shape[output_dim + 1:])
wq = loaded_weight.narrow(
output_dim + 1, 0, num_query_heads_per_kv_head).reshape(
*loaded_weight_shape[:output_dim], -1,
*loaded_weight_shape[output_dim + 1:])
wk = loaded_weight.narrow(
output_dim + 1, num_query_heads_per_kv_head,
1).reshape(*loaded_weight_shape[:output_dim], -1,
*loaded_weight_shape[output_dim + 1:])
wv = loaded_weight.narrow(
output_dim + 1, num_query_heads_per_kv_head + 1,
1).reshape(*loaded_weight_shape[:output_dim], -1,
*loaded_weight_shape[output_dim + 1:])
loaded_weight = torch.cat([wq, wk, wv], dim=output_dim)
if output_dim is not None:
loaded_weight = loaded_weight.view(
loaded_weight_shape[:output_dim] +
(total_num_kv_heads, num_query_heads_per_kv_head + 2,
-1) + loaded_weight_shape[output_dim + 1:])
wq = loaded_weight.narrow(
output_dim + 1, 0,
num_query_heads_per_kv_head).reshape(
*loaded_weight_shape[:output_dim], -1,
*loaded_weight_shape[output_dim + 1:])
wk = loaded_weight.narrow(
output_dim + 1, num_query_heads_per_kv_head,
1).reshape(*loaded_weight_shape[:output_dim], -1,
*loaded_weight_shape[output_dim + 1:])
wv = loaded_weight.narrow(
output_dim + 1, num_query_heads_per_kv_head + 1,
1).reshape(*loaded_weight_shape[:output_dim], -1,
*loaded_weight_shape[output_dim + 1:])
loaded_weight = torch.cat([wq, wk, wv], dim=output_dim)
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -275,7 +275,6 @@ class GPT2LMHeadModel(nn.Module):
if not name.endswith(".weight"):
continue
loaded_weight = loaded_weight.t()
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -274,11 +274,18 @@ class GPTJForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -72,7 +72,6 @@ class GPTNeoXAttention(nn.Module):
config.hidden_size,
linear_method=linear_method,
)
scaling = self.head_size**-0.5
rotary_dim = int(self.head_size * config.rotary_pct)
assert rotary_dim % 2 == 0

View File

@ -289,11 +289,18 @@ class InternLMForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -330,11 +330,18 @@ class LlamaForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -321,11 +321,18 @@ class MistralForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -153,7 +153,7 @@ class MixtralMoE(nn.Module):
self.gate = ReplicatedLinear(config.hidden_size,
self.num_total_experts,
bias=False,
linear_method=linear_method)
linear_method=None)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
@ -418,11 +418,18 @@ class MixtralForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -297,6 +297,9 @@ class MPTForCausalLM(nn.Module):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -345,11 +345,18 @@ class OPTForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -305,6 +305,9 @@ class PhiForCausalLM(nn.Module):
if "rotary_emb.inv_freq" in name:
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# pylint: disable=E1136
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",

View File

@ -82,7 +82,6 @@ class QWenAttention(nn.Module):
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = hidden_size // self.total_num_heads
self.c_attn = QKVParallelLinear(
hidden_size,
self.head_dim,
@ -279,11 +278,18 @@ class QWenLMHeadModel(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -320,11 +320,18 @@ class YiForCausalLM(nn.Module):
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)

View File

@ -287,4 +287,5 @@ def initialize_dummy_weights(
values between -1e-3 and 1e-3 works well for most models.
"""
for param in model.state_dict().values():
param.data.uniform_(low, high)
if torch.is_floating_point(param):
param.data.uniform_(low, high)