Enhance lora tests with more layer and rank variations (#3243)
This commit is contained in:
parent
8437bae6ef
commit
0bba88df03
@ -14,6 +14,7 @@ void bgmv_kernel(out_T *__restrict__ Y, const in_T *__restrict__ X,
|
||||
f(in_T, out_T, W_T, narrow, 128) \
|
||||
f(in_T, out_T, W_T, narrow, 256) \
|
||||
f(in_T, out_T, W_T, narrow, 512) \
|
||||
f(in_T, out_T, W_T, narrow, 768) \
|
||||
f(in_T, out_T, W_T, narrow, 1024) \
|
||||
f(in_T, out_T, W_T, narrow, 1280) \
|
||||
f(in_T, out_T, W_T, narrow, 1728) \
|
||||
|
@ -21,6 +21,7 @@ einops # required for MPT
|
||||
openai
|
||||
requests
|
||||
ray
|
||||
peft
|
||||
|
||||
# Benchmarking
|
||||
aiohttp
|
||||
|
104
tests/lora/test_layer_variation.py
Normal file
104
tests/lora/test_layer_variation.py
Normal file
@ -0,0 +1,104 @@
|
||||
from typing import List, Optional
|
||||
import peft
|
||||
import pytest
|
||||
from random import sample
|
||||
import tempfile
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
import vllm
|
||||
from vllm.lora.request import LoRARequest
|
||||
from .conftest import cleanup
|
||||
|
||||
MODEL_PATH = "Felladrin/Llama-68M-Chat-v1"
|
||||
PROMPTS = [
|
||||
"[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nSpellForce 3 is a pretty bad game. The developer Grimlore Games is clearly a bunch of no-talent hacks, and 2017 was a terrible year for games anyway. [/user] [assistant]",
|
||||
"[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nI wanted to like Grimlore Games' 2017 entry, but in SpellForce 3 they just didn't get anything right. [/user] [assistant]",
|
||||
"[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nBioShock is a good role-playing, action-adventure, shooter that released for PlayStation, Xbox, and PC in 2007. It is available on Steam, and it has a Mac release but not a Linux release. [/user] [assistant]",
|
||||
]
|
||||
|
||||
|
||||
def get_lora_model(model_id: str, target_modules: List[str], rank: int):
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
lora_config = peft.tuners.lora.LoraConfig(target_modules, rank)
|
||||
lora_model = peft.PeftModel(model, lora_config)
|
||||
return lora_model
|
||||
|
||||
|
||||
def do_sample(llm,
|
||||
lora_path: Optional[str] = None,
|
||||
lora_id: Optional[int] = None,
|
||||
logprobs: int = 0,
|
||||
n_tokens: int = 256):
|
||||
prompts = PROMPTS
|
||||
sampling_params = vllm.SamplingParams(temperature=0,
|
||||
max_tokens=n_tokens,
|
||||
logprobs=logprobs,
|
||||
stop=["[/assistant]"])
|
||||
outputs = llm.generate(
|
||||
prompts,
|
||||
sampling_params,
|
||||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
||||
if lora_id else None)
|
||||
# Print the outputs.
|
||||
generated_texts = []
|
||||
generated_logprobs = []
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
generated_texts.append(generated_text)
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
generated_logprobs.append([
|
||||
list(logprob.keys()) for out in output.outputs
|
||||
for logprob in out.logprobs
|
||||
])
|
||||
return generated_logprobs if logprobs else generated_texts
|
||||
|
||||
|
||||
SUPPORTED_MODULES = [
|
||||
"qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens",
|
||||
"lm_head"
|
||||
]
|
||||
TARGET_MODULES_LIST = []
|
||||
for length in range(2, 6):
|
||||
TARGET_MODULES_LIST.extend(
|
||||
[sample(SUPPORTED_MODULES, length) for _ in range(3)])
|
||||
|
||||
|
||||
# Test the correctness when layer and rank are varied
|
||||
# step 1: init a base model and serve with LoRA to get the reference results
|
||||
# step 2: merge the same LoRA to the base model, serve the merged model
|
||||
# step 3: compare the results from step 1 and step 2
|
||||
@pytest.mark.parametrize("tp_size", [1])
|
||||
@pytest.mark.parametrize("target_modules", TARGET_MODULES_LIST)
|
||||
@pytest.mark.parametrize("rank", [8, 16, 32, 64])
|
||||
def test_layer_variation_correctness(tp_size, target_modules, rank):
|
||||
llm = vllm.LLM(MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_loras=4,
|
||||
tensor_parallel_size=tp_size,
|
||||
worker_use_ray=True)
|
||||
model = get_lora_model(MODEL_PATH, target_modules, rank)
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
model.save_pretrained(tmpdir)
|
||||
merged_probs = do_sample(llm, tmpdir, 1, logprobs=5, n_tokens=32)
|
||||
del llm
|
||||
cleanup()
|
||||
reference_id_sets = [set(prob[0]) for prob in merged_probs]
|
||||
|
||||
model = get_lora_model(MODEL_PATH, target_modules, rank)
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
merged_model = model.merge_and_unload()
|
||||
merged_model.save_pretrained(tmpdir)
|
||||
llm = vllm.LLM(tmpdir,
|
||||
tokenizer=MODEL_PATH,
|
||||
enable_lora=False,
|
||||
max_num_seqs=16,
|
||||
tensor_parallel_size=tp_size,
|
||||
worker_use_ray=True)
|
||||
probs = do_sample(llm, logprobs=5, n_tokens=32)
|
||||
del llm
|
||||
cleanup()
|
||||
# verify the top-5 tokens are identical for each token
|
||||
id_sets = [set(prob[0]) for prob in probs]
|
||||
assert id_sets == reference_id_sets
|
Loading…
x
Reference in New Issue
Block a user