[Misc] Add multipstep chunked-prefill support for FlashInfer (#10467)

This commit is contained in:
Elfie Guo 2025-01-14 20:47:49 -08:00 committed by GitHub
parent b7ee940a82
commit 0794e7446e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 162 additions and 102 deletions

View File

@ -95,6 +95,16 @@ __global__ void advance_step_flashinfer_kernel(
long* input_positions_ptr, int* seq_lens_ptr, long* slot_mapping_ptr,
int const* block_tables_ptr, int64_t const block_tables_stride,
int* paged_kv_last_page_len_ptr, int* block_table_bound_ptr) {
int const n_pad = num_seqs - num_queries;
if (n_pad && blockIdx.x == 0) {
// Handle cuda graph padding
int const offset = num_queries;
for (int i = threadIdx.x; i < n_pad; i += blockDim.x) {
input_tokens_ptr[offset + i] = 0;
input_positions_ptr[offset + i] = 0;
slot_mapping_ptr[offset + i] = -1;
}
}
int num_query_blocks = div_ceil(num_queries, num_threads);
if (blockIdx.x < num_query_blocks) {

View File

@ -5,6 +5,8 @@ from typing import Optional
import pytest
from tests.kernels.utils import override_backend_env_variable
from ..models.utils import check_logprobs_close, check_outputs_equal
MODELS = [
@ -19,10 +21,11 @@ NUM_PROMPTS = [10]
@pytest.mark.parametrize("tp_size", [1])
@pytest.mark.parametrize("enable_chunked_prefill", [False, True])
@pytest.mark.parametrize("max_tokens", [5])
@pytest.mark.parametrize("enforce_eager", [True])
@pytest.mark.parametrize("enforce_eager", [True, False])
@pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS)
@pytest.mark.parametrize("num_prompts", NUM_PROMPTS)
@pytest.mark.parametrize("num_logprobs", [None, 5])
@pytest.mark.parametrize("attention_backend", ["FLASH_ATTN", "FLASHINFER"])
def test_multi_step_llm(
hf_runner,
vllm_runner,
@ -36,6 +39,8 @@ def test_multi_step_llm(
num_scheduler_steps: int,
num_prompts: int,
num_logprobs: Optional[int],
attention_backend: str,
monkeypatch,
) -> None:
"""Test vLLM engine with multi-step scheduling via sync LLM Engine.
@ -63,6 +68,7 @@ def test_multi_step_llm(
num_logprobs: corresponds to the `logprobs` argument to the OpenAI
completions endpoint; `None` -> 1 logprob returned.
"""
override_backend_env_variable(monkeypatch, attention_backend)
prompts = example_prompts
if len(prompts) < num_prompts:
@ -114,6 +120,7 @@ def test_multi_step_llm(
@pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS)
@pytest.mark.parametrize("num_prompts", NUM_PROMPTS)
@pytest.mark.parametrize("num_logprobs,num_prompt_logprobs", [(5, 5)])
@pytest.mark.parametrize("attention_backend", ["FLASH_ATTN"])
def test_multi_step_llm_w_prompt_logprobs(
vllm_runner,
example_prompts,
@ -126,6 +133,8 @@ def test_multi_step_llm_w_prompt_logprobs(
num_prompts: int,
num_logprobs: Optional[int],
num_prompt_logprobs: Optional[int],
attention_backend: str,
monkeypatch,
) -> None:
"""Test prompt logprobs with multi-step scheduling via sync LLM Engine.
@ -155,6 +164,7 @@ def test_multi_step_llm_w_prompt_logprobs(
note that this argument is not supported by the
OpenAI completions endpoint.
"""
override_backend_env_variable(monkeypatch, attention_backend)
prompts = example_prompts
if len(prompts) < num_prompts:
@ -205,6 +215,7 @@ def test_multi_step_llm_w_prompt_logprobs(
@pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS)
@pytest.mark.parametrize("num_prompts", NUM_PROMPTS)
@pytest.mark.parametrize("num_logprobs", [None, 5])
@pytest.mark.parametrize("attention_backend", ["FLASH_ATTN"])
def test_multi_step_llm_chunked_prefill_prefix_cache(
vllm_runner,
example_prompts,
@ -216,6 +227,8 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
num_scheduler_steps: int,
num_prompts: int,
num_logprobs: Optional[int],
attention_backend: str,
monkeypatch,
) -> None:
"""Test vLLM engine with multi-step+"single-step chunked prefill"+APC.
@ -278,6 +291,8 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
#
# The Incorrect scheduling behavior - if it occurs - will cause an exception
# in the model runner resulting from `do_sample=False`.
override_backend_env_variable(monkeypatch, attention_backend)
assert len(example_prompts) >= 2
challenge_prompts = copy.deepcopy(example_prompts)
challenge_prompts[0] = ('vLLM is a high-throughput and memory-efficient '

View File

@ -256,7 +256,12 @@ class FlashInferState(AttentionState):
def begin_forward(self, model_input):
assert not self._is_graph_capturing
state = self
if model_input.attn_metadata.use_cuda_graph:
use_cuda_graph = model_input.attn_metadata.use_cuda_graph
is_decode = model_input.attn_metadata.num_prefills == 0
# In case of multistep chunked-prefill, there might be prefill requests
# scheduled while CUDA graph mode is enabled. We don't run graph in that
# case.
if use_cuda_graph and is_decode:
batch_size = model_input.input_tokens.shape[0]
state = (self.runner.graph_runners[model_input.virtual_engine]
[batch_size].attn_state)
@ -429,10 +434,24 @@ class FlashInferMetadata(AttentionMetadata):
Update metadata in-place to advance one decode step.
"""
assert not turn_prefills_into_decodes, \
("Chunked prefill is not supported with flashinfer yet."
"turn_prefills_into_decodes is a Multi-Step + Chunked-Prefill "
"specific parameter.")
if turn_prefills_into_decodes:
# When Multi-Step is enabled with Chunked-Prefill, prefills and
# decodes are scheduled together. In the first step, all the
# prefills turn into decodes. This update reflects that
# conversion.
assert self.num_decode_tokens + self.num_prefills == num_seqs
# Flashinfer doesn't support speculative decoding + chunked-prefill
# + multi-step scheduling yet.
assert self.decode_query_len == 1
self.num_decode_tokens += self.num_prefills
self.num_prefills = 0
self.num_prefill_tokens = 0
self.max_prefill_seq_len = 0
self.max_query_len = 1
self.slot_mapping = self.slot_mapping[:num_seqs]
else:
assert self.seq_lens_tensor is not None
assert num_seqs > 0
assert num_queries > 0

View File

@ -5,6 +5,7 @@ import itertools
import time
import warnings
import weakref
from contextlib import contextmanager
from dataclasses import dataclass
from typing import (TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set,
Tuple, Type, TypeVar, Union)
@ -1028,6 +1029,8 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
self.has_inner_state = model_config.has_inner_state
self.in_profile_run = False
# When using CUDA graph, the input block tables must be padded to
# max_seq_len_to_capture. However, creating the block table in
# Python can be expensive. To optimize this, we cache the block table
@ -1228,11 +1231,22 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
return builder.build() # type: ignore
@contextmanager
def set_in_profile_run(self):
self.in_profile_run = True
try:
yield
finally:
self.in_profile_run = False
@torch.inference_mode()
def profile_run(self) -> None:
with self.set_in_profile_run():
# Enable top-k sampling to reflect the accurate memory usage.
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
sampling_params = \
SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
max_num_batched_tokens = \
self.scheduler_config.max_num_batched_tokens
max_num_seqs = self.scheduler_config.max_num_seqs
# This represents the maximum number of different requests
# that will have unique loras, an therefore the max amount of memory
@ -1258,12 +1272,12 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
for idx in range(max_num_seqs)
]
# Profile memory usage with max_num_sequences sequences and the total
# number of tokens equal to max_num_batched_tokens.
# Profile memory usage with max_num_sequences sequences and the
# total number of tokens equal to max_num_batched_tokens.
seqs: List[SequenceGroupMetadata] = []
# Additional GPU memory may be needed for multi-modal encoding, which
# needs to be accounted for when calculating the GPU blocks for
# vLLM blocker manager.
# Additional GPU memory may be needed for multi-modal encoding,
# which needs to be accounted for when calculating the GPU blocks
# for vLLM blocker manager.
# To exercise the worst scenario for GPU memory consumption,
# the number of seqs (batch_size) is chosen to maximize the number
# of images processed.
@ -1302,7 +1316,8 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
lora_request=dummy_lora_requests_per_seq[group_id]
if dummy_lora_requests_per_seq else None,
multi_modal_data=dummy_data.multi_modal_data,
multi_modal_placeholders=dummy_data.multi_modal_placeholders,
multi_modal_placeholders=dummy_data.
multi_modal_placeholders,
)
seqs.append(seq)
@ -1324,7 +1339,8 @@ class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
seqs, finished_requests_ids=finished_requests_ids)
intermediate_tensors = None
if not get_pp_group().is_first_rank:
intermediate_tensors = self.model.make_empty_intermediate_tensors(
intermediate_tensors = \
self.model.make_empty_intermediate_tensors(
batch_size=batch_size,
dtype=self.model_config.dtype,
device=self.device)

View File

@ -32,7 +32,7 @@ logger = init_logger(__name__)
MULTI_STEP_ATTENTION_BACKENDS = [
"FLASH_ATTN", "ROCM_FLASH", "FLASHINFER", "NO_ATTENTION"
]
MULTI_STEP_CHUNKED_PREFILL_ATTENTION_BACKENDS = ["FLASH_ATTN"]
MULTI_STEP_CHUNKED_PREFILL_ATTENTION_BACKENDS = ["FLASH_ATTN", "FLASHINFER"]
def _get_supported_attention_backends(chunked_prefill_enabled: bool) \
-> List[str]: