[misc] benchmark_serving.py -- add ITL results and tweak TPOT results (#5263)

This commit is contained in:
Tyler Michael Smith 2024-06-05 13:17:51 -04:00 committed by GitHub
parent d5b1eb081e
commit 02cc3b51a7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 23 additions and 2 deletions

View File

@ -50,7 +50,7 @@ echo "### Serving Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
echo '```' >> benchmark_results.md
tail -n 20 benchmark_serving.txt >> benchmark_results.md # last 20 lines
tail -n 24 benchmark_serving.txt >> benchmark_results.md # last 24 lines
echo '```' >> benchmark_results.md
# if the agent binary is not found, skip uploading the results, exit 0

View File

@ -56,6 +56,9 @@ class BenchmarkMetrics:
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
mean_itl_ms: float
median_itl_ms: float
p99_itl_ms: float
def sample_sharegpt_requests(
@ -200,16 +203,24 @@ def calculate_metrics(
actual_output_lens = []
total_input = 0
completed = 0
itls = []
tpots = []
ttfts = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = len(tokenizer(outputs[i].generated_text).input_ids)
# We use the tokenizer to count the number of output tokens for all
# serving backends instead of looking at len(outputs[i].itl) since
# multiple output tokens may be bundled together
# Note: this may inflate the output token count slightly
output_len = len(
tokenizer(outputs[i].generated_text,
add_special_tokens=False).input_ids)
actual_output_lens.append(output_len)
total_input += input_requests[i][1]
if output_len > 1:
tpots.append(
(outputs[i].latency - outputs[i].ttft) / (output_len - 1))
itls += outputs[i].itl
ttfts.append(outputs[i].ttft)
completed += 1
else:
@ -234,6 +245,9 @@ def calculate_metrics(
mean_tpot_ms=np.mean(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
mean_itl_ms=np.mean(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
)
return metrics, actual_output_lens
@ -333,6 +347,10 @@ async def benchmark(
print("{:<40} {:<10.2f}".format("Median TPOT (ms):",
metrics.median_tpot_ms))
print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
print("{s:{c}^{n}}".format(s='Inter-token Latency', n=50, c='-'))
print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
print("=" * 50)
result = {
@ -349,6 +367,9 @@ async def benchmark(
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms,
"mean_itl_ms": metrics.mean_itl_ms,
"median_itl_ms": metrics.median_itl_ms,
"p99_itl_ms": metrics.p99_itl_ms,
"input_lens": [output.prompt_len for output in outputs],
"output_lens": actual_output_lens,
"ttfts": [output.ttft for output in outputs],