[Model] Port deepseek-vl2 processor, remove dependency (#12169)

Signed-off-by: Isotr0py <2037008807@qq.com>
This commit is contained in:
Isotr0py 2025-01-18 13:59:39 +08:00 committed by GitHub
parent 813f249f02
commit 02798ecabe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 385 additions and 49 deletions

View File

@ -52,7 +52,6 @@ steps:
- tests/worker
- tests/standalone_tests/lazy_torch_compile.py
commands:
- pip install git+https://github.com/Isotr0py/DeepSeek-VL2.git # Used by multimoda processing test
- python3 standalone_tests/lazy_torch_compile.py
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine

View File

@ -767,16 +767,10 @@ See [this page](#generative-models) for more information on how to use generativ
<sup>E</sup> Pre-computed embeddings can be inputted for this modality.
<sup>+</sup> Multiple items can be inputted per text prompt for this modality.
````{note}
To use `DeepSeek-VL2` series models, you need to install a fork version `deepseek_vl2` package:
```shell
pip install git+https://github.com/Isotr0py/DeepSeek-VL2.git
```{note}
To use `DeepSeek-VL2` series models, you have to pass `--hf_overrides '{"architectures": ["DeepseekVLV2ForCausalLM"]}'` when running vLLM.
```
Besides, to run `DeepSeek-VL2` series models, you have to pass `--hf_overrides '{"architectures": ["DeepseekVLV2ForCausalLM"]}'` when running vLLM.
````
```{note}
To use `TIGER-Lab/Mantis-8B-siglip-llama3`, you have to pass `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` when running vLLM.
```

View File

@ -393,7 +393,7 @@ def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData:
model_example_map = {
"aria": load_aria,
"deepseek_vl2": load_deepseek_vl2,
"deepseek_vl_v2": load_deepseek_vl2,
"h2ovl_chat": load_h2onvl,
"idefics3": load_idefics3,
"internvl_chat": load_internvl,

View File

@ -190,7 +190,7 @@ VLM_TEST_SETTINGS = {
dtype="bfloat16",
),
"deepseek_vl_v2": VLMTestInfo(
models=["deepseek-ai/deepseek-vl2-tiny"],
models=["Isotr0py/deepseek-vl2-tiny"], # model repo using dynamic module
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
prompt_formatter=lambda img_prompt: f"<|User|>: {img_prompt}\n\n<|Assistant|>: ", # noqa: E501
max_model_len=4096,

View File

@ -22,6 +22,8 @@ def _test_processing_correctness(
):
if model_id == "TIGER-Lab/Mantis-8B-siglip-llama3":
hf_overrides = {"architectures": ["MantisForConditionalGeneration"]}
elif model_id == "deepseek-ai/deepseek-vl2-tiny":
hf_overrides = {"architectures": ["DeepseekVLV2ForCausalLM"]}
else:
hf_overrides = {}
@ -139,6 +141,7 @@ def _test_processing_correctness(
("rhymes-ai/Aria", {"image": True}),
("Salesforce/blip2-opt-2.7b", {"image": False}),
("facebook/chameleon-7b", {"image": False}),
("deepseek-ai/deepseek-vl2-tiny", {"image": True}),
("adept/fuyu-8b", {"image": False}),
("llava-hf/llava-1.5-7b-hf", {"image": True}),
("llava-hf/llava-v1.6-mistral-7b-hf", {"image": True}),

View File

@ -1,7 +1,7 @@
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py
"""Inference-only Deepseek-VL2 model compatible with HuggingFace weights."""
import math
from functools import cached_property, partial
from functools import cached_property
from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple,
TypedDict, Union)
@ -9,7 +9,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import AutoProcessor, BatchFeature, ProcessorMixin
from transformers import BatchFeature
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
@ -31,6 +31,8 @@ from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
MlpProjectorConfig,
VisionEncoderConfig)
from vllm.transformers_utils.processors.deepseek_vl2 import (
DeepseekVLV2Processor)
from vllm.utils import is_list_of
from .interfaces import SupportsMultiModal, SupportsPP
@ -129,25 +131,8 @@ class DeepseekVL2ProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(DeepseekVLV2Config)
def get_hf_processor(self) -> ProcessorMixin:
# TODO(Isotr0py): we should get rid of dependency on deepseek_vl2
# in the future, because it's flasky and lack of maintenance.
try:
from deepseek_vl2.models.processing_deepseek_vl_v2 import (
DeepseekVLV2Processor, select_best_resolution)
AutoProcessor.register("DeepseekVLV2Processor",
DeepseekVLV2Processor)
except ModuleNotFoundError as exc:
raise ModuleNotFoundError(
"You need to `pip install "
"git+https://github.com/deepseek-ai/DeepSeek-VL2.git` "
"to use this model") from exc
processor = self.ctx.get_hf_processor(DeepseekVLV2Processor)
processor.select_best_resolution = partial(
select_best_resolution,
candidate_resolutions=processor.candidate_resolutions)
return processor
def get_hf_processor(self) -> DeepseekVLV2Processor:
return self.ctx.get_hf_processor(DeepseekVLV2Processor)
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None}
@ -224,31 +209,21 @@ class DeepseekVL2MultiModalProcessor(
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
if mm_data:
outputs = self.info.ctx.call_hf_processor(
processed_outputs = self.info.ctx.call_hf_processor(
self.info.get_hf_processor(**mm_kwargs),
dict(prompt=prompt, **mm_data),
mm_kwargs,
)
# Deepseek-vl2 processor don't return BatchFeature,
# we need to manually create it
processed_outputs = dict(input_ids=outputs["input_ids"])
processed_outputs = BatchFeature(data=dict(processed_outputs),
tensor_type="pt")
# Remove batch dimension from processor outputs,
# because we will try batch to create NestedTensors
target_dtype = self.info.ctx.model_config.dtype
pixel_values = outputs["images"].to(target_dtype).squeeze(0)
images_spatial_crop = outputs["images_spatial_crop"].squeeze(0)
pixel_values = processed_outputs.pop("pixel_values").to(
target_dtype)
# split pixel values into patches corresponding to each image
images_spatial_crop = processed_outputs["images_spatial_crop"]
patches_per_image = [
x.prod().item() + 1 for x in images_spatial_crop
]
# Rename `images` -> `pixel_values` to avoid confusion
processed_outputs["pixel_values"] = list(
pixel_values.split(patches_per_image))
processed_outputs["images_spatial_crop"] = images_spatial_crop
pixel_values = pixel_values.split(patches_per_image)
processed_outputs["pixel_values"] = pixel_values
else:
tokenizer = self.info.get_tokenizer()
processed_outputs = tokenizer(prompt,

View File

@ -0,0 +1,4 @@
from vllm.transformers_utils.processors.deepseek_vl2 import (
DeepseekVLV2Processor)
__all__ = ["DeepseekVLV2Processor"]

View File

@ -0,0 +1,361 @@
# yapf: disable
# ruff: noqa: E501
# coding=utf-8
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/ff23960c5cf9e6874b44be38af930cfb0ccbb620/deepseek_vl2/models/processing_deepseek_vl_v2.py
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import math
from typing import List, Tuple
import torch
import torchvision.transforms as T
from PIL import Image, ImageOps
from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
from transformers.processing_utils import ProcessorMixin
class ImageTransform:
def __init__(self,
mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
normalize: bool = True):
self.mean = mean
self.std = std
self.normalize = normalize
transform_pipelines = [T.ToTensor()]
if normalize:
transform_pipelines.append(T.Normalize(mean, std))
self.transform = T.Compose(transform_pipelines)
def __call__(self, pil_img: Image.Image):
x = self.transform(pil_img)
return x
class DeepseekVLV2Processor(ProcessorMixin):
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
attributes = ["tokenizer"]
def __init__(
self,
tokenizer: LlamaTokenizerFast,
candidate_resolutions: Tuple[Tuple[int, int]],
patch_size: int,
downsample_ratio: int,
image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
normalize: bool = True,
image_token: str = "<image>",
pad_token: str = "<▁pad▁>",
add_special_token: bool = False,
sft_format: str = "deepseek",
mask_prompt: bool = True,
ignore_id: int = -100,
**kwargs,
):
self.candidate_resolutions = candidate_resolutions
self.image_size = candidate_resolutions[0][0]
self.patch_size = patch_size
self.image_mean = image_mean
self.image_std = image_std
self.normalize = normalize
self.downsample_ratio = downsample_ratio
self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)
self.tokenizer = tokenizer
self.tokenizer.padding_side = 'left' # must set thispadding side with make a difference in batch inference
# add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
if tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({'pad_token': pad_token})
# add image token
image_token_id = self.tokenizer.vocab.get(image_token)
if image_token_id is None:
special_tokens = [image_token]
special_tokens_dict = {"additional_special_tokens": special_tokens}
self.tokenizer.add_special_tokens(special_tokens_dict)
self.image_token_id = self.tokenizer.vocab.get(image_token)
# add five special tokens for grounding-related tasks
# <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>']
special_tokens_dict = {"additional_special_tokens": special_tokens}
self.tokenizer.add_special_tokens(special_tokens_dict)
# add special tokens for SFT data
special_tokens = ["<|User|>", "<|Assistant|>"]
special_tokens_dict = {"additional_special_tokens": special_tokens}
self.tokenizer.add_special_tokens(special_tokens_dict)
self.image_token = image_token
self.pad_token = pad_token
self.add_special_token = add_special_token
self.sft_format = sft_format
self.mask_prompt = mask_prompt
self.ignore_id = ignore_id
super().__init__(
tokenizer,
**kwargs,
)
def select_best_resolution(self, image_size):
# used for cropping
original_width, original_height = image_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in self.candidate_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(
original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height,
original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (
effective_resolution == max_effective_resolution
and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
@property
def bos_id(self):
return self.tokenizer.bos_token_id
@property
def eos_id(self):
return self.tokenizer.eos_token_id
@property
def pad_id(self):
return self.tokenizer.pad_token_id
def encode(self, text: str, bos: bool = True, eos: bool = False):
t = self.tokenizer.encode(text, add_special_tokens=False)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int], **kwargs) -> str:
return self.tokenizer.decode(t, **kwargs)
def process_one(
self,
prompt: str,
images: List[Image.Image],
inference_mode: bool = True,
**kwargs,
):
"""
Args:
prompt (str): the formatted prompt;
conversations (List[Dict]): conversations with a list of messages;
images (List[ImageType]): the list of images;
inference_mode (bool): if True, then remove the last eos token;
system_prompt (str): the system prompt;
**kwargs:
Returns:
outputs (BaseProcessorOutput): the output of the processor,
- input_ids (torch.LongTensor): [N + image tokens]
- target_ids (torch.LongTensor): [N + image tokens]
- pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
- image_id (int): the id of the image token
- num_image_tokens (List[int]): the number of image tokens
"""
assert (prompt is not None and images is not None
), "prompt and images must be used at the same time."
sft_format = prompt
tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.tokenize_with_images(
sft_format, images, bos=True, eos=True, cropping=len(images) <= 2)
masked_tokenized_str = []
for token_index in tokenized_str:
if token_index != self.image_token_id:
masked_tokenized_str.append(token_index)
else:
masked_tokenized_str.append(self.ignore_id)
assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
(f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")
input_ids = torch.LongTensor(tokenized_str)
target_ids = torch.LongTensor(masked_tokenized_str)
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id
target_ids[(input_ids < 0) |
(input_ids == self.image_token_id)] = self.ignore_id
input_ids[input_ids < 0] = self.pad_id
if inference_mode:
# 去掉结尾的eos token
assert input_ids[-1] == self.eos_id
input_ids = input_ids[:-1]
target_ids = target_ids[:-1]
images_seq_mask = images_seq_mask[:-1]
if len(images_list) == 0:
pixel_values = torch.zeros((1, 3, self.image_size, self.image_size))
images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
else:
pixel_values = torch.stack(images_list, dim=0)
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
input_ids = input_ids.unsqueeze(0)
prepare = BatchFeature(
data=dict(
input_ids=input_ids,
pixel_values=pixel_values,
images_seq_mask=images_seq_mask,
images_spatial_crop=images_spatial_crop,
num_image_tokens=num_image_tokens,
),
tensor_type="pt",
)
return prepare
def __call__(
self,
*,
prompt: str,
images: List[Image.Image],
inference_mode: bool = True,
**kwargs,
):
"""
Args:
prompt (str): the formatted prompt;
images (List[ImageType]): the list of images;
inference_mode (bool): if True, then remove the last eos token;
**kwargs:
Returns:
outputs (BaseProcessorOutput): the output of the processor,
- input_ids (torch.LongTensor): [N + image tokens]
- images (torch.FloatTensor): [n_images, 3, H, W]
- image_id (int): the id of the image token
- num_image_tokens (List[int]): the number of image tokens
"""
prepare = self.process_one(
prompt=prompt,
images=images,
inference_mode=inference_mode,
)
return prepare
def tokenize_with_images(
self,
conversation: str,
images: List[Image.Image],
bos: bool = True,
eos: bool = True,
cropping: bool = True,
):
"""Tokenize text with <image> tags."""
assert conversation.count(self.image_token) == len(images)
text_splits = conversation.split(self.image_token)
images_list, images_seq_mask, images_spatial_crop = [], [], []
num_image_tokens = []
tokenized_str = []
for text_sep, image in zip(text_splits, images):
"""encode text_sep"""
tokenized_sep = self.encode(text_sep, bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
"""select best resolution for anyres"""
if cropping:
best_width, best_height = self.select_best_resolution(image.size)
else:
best_width, best_height = self.image_size, self.image_size
"""process the global view"""
global_view = ImageOps.pad(image, (self.image_size, self.image_size),
color=tuple(int(x * 255) for x in self.image_transform.mean))
images_list.append(self.image_transform(global_view))
"""process the local views"""
local_view = ImageOps.pad(image, (best_width, best_height),
color=tuple(int(x * 255) for x in self.image_transform.mean))
for i in range(0, best_height, self.image_size):
for j in range(0, best_width, self.image_size):
images_list.append(
self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
"""record height / width crop num"""
num_width_tiles, num_height_tiles = best_width // self.image_size, best_height // self.image_size
images_spatial_crop.append([num_width_tiles, num_height_tiles])
"""add image tokens"""
h = w = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
# global views tokens h * (w + 1), 1 is for line separator
tokenized_image = [self.image_token_id] * h * (w + 1)
# add a separator between global and local views
tokenized_image += [self.image_token_id]
# local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
tokenized_image += [self.image_token_id] * (num_height_tiles * h) * (num_width_tiles * w + 1)
tokenized_str += tokenized_image
images_seq_mask += [True] * len(tokenized_image)
num_image_tokens.append(len(tokenized_image))
"""process the last text split"""
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
"""add the bos and eos tokens"""
if bos:
tokenized_str = [self.bos_id] + tokenized_str
images_seq_mask = [False] + images_seq_mask
if eos:
tokenized_str = tokenized_str + [self.eos_id]
images_seq_mask = images_seq_mask + [False]
assert len(tokenized_str) == len(
images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
return tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
AutoProcessor.register("DeepseekVLV2Processor", DeepseekVLV2Processor)