vllm/tests/distributed/test_chunked_prefill_distributed.py

76 lines
2.3 KiB
Python
Raw Normal View History

"""Compare the outputs of HF and distributed vLLM when using greedy sampling.
Run:
```sh
pytest test_chunked_prefill_distributed.py
```
"""
import os
import pytest
from vllm.utils import cuda_device_count_stateless
from ..models.utils import check_outputs_equal
from ..utils import fork_new_process_for_each_test
@pytest.mark.skipif(cuda_device_count_stateless() < 2,
reason="Need at least 2 GPUs to run the test.")
@pytest.mark.parametrize("model, distributed_executor_backend", [
("facebook/opt-125m", "ray"),
("meta-llama/Llama-2-7b-hf", "ray"),
("facebook/opt-125m", "mp"),
("meta-llama/Llama-2-7b-hf", "mp"),
])
@fork_new_process_for_each_test
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
distributed_executor_backend: str,
) -> None:
if model == "meta-llama/Llama-2-7b-hf" and distributed_executor_backend == "ray": # noqa
assert distributed_executor_backend == "ray"
# test ray adag
os.environ['VLLM_USE_RAY_SPMD_WORKER'] = "1"
os.environ['VLLM_USE_RAY_COMPILED_DAG'] = "1"
dtype = "half"
max_tokens = 5
chunked_prefill_token_size = 16
# Add a chunked prefill config.
max_num_seqs = min(chunked_prefill_token_size, 256)
assert chunked_prefill_token_size != -1
enable_chunked_prefill = True
max_num_batched_tokens = chunked_prefill_token_size
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
with vllm_runner(
model,
dtype=dtype,
tensor_parallel_size=2,
max_num_seqs=max_num_seqs,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)