97 lines
2.7 KiB
Python
97 lines
2.7 KiB
Python
![]() |
"""
|
||
|
Test the piecewise compilation with a simple model so that we
|
||
|
can exactly calculate the expected output and side effects.
|
||
|
"""
|
||
|
import os
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from vllm.compilation.compile_context import set_compile_context
|
||
|
from vllm.compilation.counter import compilation_counter
|
||
|
from vllm.compilation.decorators import support_torch_compile
|
||
|
from vllm.compilation.levels import CompilationLevel
|
||
|
|
||
|
os.environ["VLLM_TORCH_COMPILE_LEVEL"] = str(CompilationLevel.PIECEWISE)
|
||
|
|
||
|
global_counter = 0
|
||
|
|
||
|
|
||
|
@torch.library.custom_op("silly::attention", mutates_args=["out"])
|
||
|
def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||
|
out: torch.Tensor) -> None:
|
||
|
global global_counter
|
||
|
global_counter += 1
|
||
|
print(f"{global_counter=}")
|
||
|
out.copy_(q)
|
||
|
out[0] += 1
|
||
|
|
||
|
|
||
|
@silly_attention.register_fake
|
||
|
def _(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||
|
out: torch.Tensor) -> None:
|
||
|
return
|
||
|
|
||
|
|
||
|
@support_torch_compile
|
||
|
class SillyModel(nn.Module):
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Overall effect:
|
||
|
x += 1
|
||
|
x[0] += 2
|
||
|
global_counter += 2
|
||
|
"""
|
||
|
x = x + 1
|
||
|
x = x + 2
|
||
|
out = torch.empty_like(x)
|
||
|
torch.ops.silly.attention(x, x, x, out)
|
||
|
x = out
|
||
|
x = x - 2
|
||
|
x = x - 1
|
||
|
out = torch.empty_like(x)
|
||
|
torch.ops.silly.attention(x, x, x, out)
|
||
|
x = out
|
||
|
x = x + 1
|
||
|
return x
|
||
|
|
||
|
|
||
|
def test_simple_piecewise_compile():
|
||
|
|
||
|
model = SillyModel()
|
||
|
|
||
|
directory = os.path.dirname(__file__)
|
||
|
config = os.path.join(directory, "piecewise_compilation_config.json")
|
||
|
os.environ["VLLM_TORCH_COMPILE_CONFIG"] = config
|
||
|
|
||
|
input_buffer = torch.randn(100).cuda()
|
||
|
|
||
|
with compilation_counter.expect(
|
||
|
num_graphs_seen=1, # one graph for the model
|
||
|
num_piecewise_graphs_seen=5, # 2 * num_layers + 1
|
||
|
num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
|
||
|
num_inductor_compilations=3, # num_piecewise_capturable_graphs_seen
|
||
|
num_cudagraph_caputured=
|
||
|
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
||
|
):
|
||
|
|
||
|
with set_compile_context([1, 2]):
|
||
|
model(input_buffer)
|
||
|
|
||
|
model(input_buffer[:2])
|
||
|
model(input_buffer[:1])
|
||
|
|
||
|
input_buffer[:2].zero_()
|
||
|
global global_counter
|
||
|
global_counter = 0
|
||
|
output = model(input_buffer[:2])
|
||
|
assert global_counter == 2
|
||
|
assert torch.allclose(output.cpu(), torch.tensor([3., 1.]))
|
||
|
|
||
|
# clean up to avoid side effects for other tests
|
||
|
del os.environ["VLLM_TORCH_COMPILE_CONFIG"]
|