vllm/csrc/moe/torch_bindings.cpp

59 lines
2.4 KiB
C++
Raw Normal View History

#include "core/registration.h"
#include "moe_ops.h"
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
// Apply topk softmax to the gating outputs.
m.def(
"topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
"token_expert_indices, Tensor gating_output) -> ()");
m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
// Calculate the result of moe by summing up the partial results
// from all selected experts.
m.def("moe_sum(Tensor! input, Tensor output) -> ()");
m.impl("moe_sum", torch::kCUDA, &moe_sum);
// Aligning the number of tokens to be processed by each expert such
// that it is divisible by the block size.
m.def(
"moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
// temporarily adapted from
// https://github.com/sgl-project/sglang/commit/ded9fcd09a43d5e7d5bb31a2bc3e9fc21bf65d2a
m.def(
"sgl_moe_align_block_size(Tensor topk_ids, int num_experts,"
" int block_size, Tensor! sorted_token_ids,"
" Tensor! experts_ids,"
" Tensor! num_tokens_post_pad) -> ()");
m.impl("sgl_moe_align_block_size", torch::kCUDA, &sgl_moe_align_block_size);
m.def(
"moe_wna16_gemm(Tensor input, Tensor! output, Tensor b_qweight, "
"Tensor b_scales, Tensor? b_qzeros, "
"Tensor? topk_weights, Tensor sorted_token_ids, "
"Tensor expert_ids, Tensor num_tokens_post_pad, "
"int top_k, int BLOCK_SIZE_M, int BLOCK_SIZE_N, int BLOCK_SIZE_K, "
"int bit) -> Tensor");
m.impl("moe_wna16_gemm", torch::kCUDA, &moe_wna16_gemm);
#ifndef USE_ROCM
m.def(
"marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, "
"Tensor! topk_weights, Tensor! topk_ids, Tensor! b_scales, Tensor! "
"b_zeros, Tensor! g_idx, Tensor! perm, Tensor! workspace, "
"int b_q_type, SymInt size_m, "
"SymInt size_n, SymInt size_k, bool is_k_full, int num_experts, int "
"topk, "
"int moe_block_size, bool replicate_input, bool apply_weights)"
" -> Tensor");
// conditionally compiled so impl registration is in source file
#endif
}
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)