2023-10-16 10:56:50 -07:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from vllm import SamplingParams
|
|
|
|
|
2024-05-13 22:50:09 +08:00
|
|
|
from ..conftest import VllmRunner
|
|
|
|
|
2023-10-16 10:56:50 -07:00
|
|
|
MODELS = ["facebook/opt-125m"]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
2024-04-26 22:02:02 +09:00
|
|
|
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16, -1])
|
|
|
|
@pytest.mark.parametrize("num_top_logprobs", [6]) # 32000 == vocab_size
|
2023-10-16 10:56:50 -07:00
|
|
|
def test_get_prompt_logprobs(
|
|
|
|
hf_runner,
|
|
|
|
vllm_runner,
|
|
|
|
model,
|
|
|
|
dtype,
|
2024-04-26 22:02:02 +09:00
|
|
|
chunked_prefill_token_size: int,
|
|
|
|
num_top_logprobs: int,
|
2023-10-16 10:56:50 -07:00
|
|
|
example_prompts,
|
|
|
|
):
|
2024-04-26 22:02:02 +09:00
|
|
|
max_num_seqs = 256
|
|
|
|
enable_chunked_prefill = False
|
|
|
|
max_num_batched_tokens = None
|
|
|
|
if chunked_prefill_token_size != -1:
|
|
|
|
enable_chunked_prefill = True
|
|
|
|
max_num_seqs = min(chunked_prefill_token_size, max_num_seqs)
|
|
|
|
max_num_batched_tokens = chunked_prefill_token_size
|
|
|
|
|
2023-10-16 10:56:50 -07:00
|
|
|
max_tokens = 5
|
|
|
|
hf_model = hf_runner(model, dtype=dtype)
|
|
|
|
hf_logprobs = hf_model.generate_greedy_logprobs(
|
|
|
|
example_prompts,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
)
|
|
|
|
del hf_model
|
|
|
|
|
2024-04-26 22:02:02 +09:00
|
|
|
vllm_model = vllm_runner(
|
|
|
|
model,
|
|
|
|
dtype=dtype,
|
|
|
|
max_logprobs=num_top_logprobs,
|
|
|
|
enable_chunked_prefill=enable_chunked_prefill,
|
|
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
|
|
max_num_seqs=max_num_seqs,
|
|
|
|
)
|
2023-10-16 10:56:50 -07:00
|
|
|
vllm_sampling_params = SamplingParams(max_tokens=max_tokens,
|
2024-03-04 11:54:06 -08:00
|
|
|
logprobs=num_top_logprobs,
|
2024-04-26 22:02:02 +09:00
|
|
|
prompt_logprobs=num_top_logprobs,
|
2023-10-16 10:56:50 -07:00
|
|
|
temperature=0.0)
|
|
|
|
vllm_results = vllm_model.model.generate(
|
|
|
|
example_prompts, sampling_params=vllm_sampling_params)
|
|
|
|
|
|
|
|
# Test whether logprobs are included in the results.
|
|
|
|
for result in vllm_results:
|
|
|
|
assert result.prompt_logprobs is not None
|
|
|
|
assert result.outputs[0].logprobs is not None
|
2024-03-04 11:54:06 -08:00
|
|
|
assert len(result.outputs[0].logprobs) == max_tokens
|
|
|
|
for logprobs in result.outputs[0].logprobs:
|
|
|
|
assert len(logprobs) == num_top_logprobs
|
|
|
|
output_text = result.outputs[0].text
|
|
|
|
output_string_from_most_likely_tokens = []
|
|
|
|
for top_logprobs in result.outputs[0].logprobs:
|
|
|
|
top_logprob = next(iter(top_logprobs.values()))
|
|
|
|
output_string_from_most_likely_tokens.append(
|
|
|
|
top_logprob.decoded_token)
|
|
|
|
output_string_from_most_likely_tokens = "".join(
|
|
|
|
output_string_from_most_likely_tokens)
|
|
|
|
assert output_text == output_string_from_most_likely_tokens, (
|
|
|
|
"The output text from the top logprob for each token position "
|
|
|
|
"should be the same as the output text in the result.")
|
2023-10-16 10:56:50 -07:00
|
|
|
|
2024-04-26 22:02:02 +09:00
|
|
|
# The first prompt logprob is always None
|
|
|
|
assert result.prompt_logprobs[0] is None
|
|
|
|
for prompt_logprobs in result.prompt_logprobs[1:]:
|
|
|
|
# If the prompt token is not included in the top X
|
|
|
|
# logprob, it can return 1 more data
|
|
|
|
assert (len(prompt_logprobs) == num_top_logprobs
|
|
|
|
or len(prompt_logprobs) == num_top_logprobs + 1)
|
|
|
|
|
2023-10-16 10:56:50 -07:00
|
|
|
# Test whether prompt logprobs are consistent with HF
|
|
|
|
for vllm_result, hf_logprob in zip(vllm_results, hf_logprobs):
|
|
|
|
# Check prompt logprobs
|
2024-04-26 22:02:02 +09:00
|
|
|
# The first prompt logprob is always None, so we compare it from 1:.
|
2023-10-16 10:56:50 -07:00
|
|
|
vllm_prompt_logprobs = vllm_result.prompt_logprobs[1:]
|
|
|
|
for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs):
|
|
|
|
for token_id, logprob in vllm_prompt_logprob_dict.items():
|
2024-03-04 11:54:06 -08:00
|
|
|
torch.testing.assert_close(logprob.logprob,
|
2023-10-16 10:56:50 -07:00
|
|
|
hf_logprob[0][i][token_id].item(),
|
|
|
|
atol=1e-2,
|
|
|
|
rtol=1e-2)
|
|
|
|
vllm_sample_logprobs = vllm_result.outputs[0].logprobs
|
2024-03-04 11:54:06 -08:00
|
|
|
for i, top_logprobs in enumerate(vllm_sample_logprobs):
|
|
|
|
for token_id, sample_logprob in top_logprobs.items():
|
|
|
|
logprob = sample_logprob.logprob
|
2023-10-16 10:56:50 -07:00
|
|
|
torch.testing.assert_close(logprob,
|
|
|
|
hf_logprob[i][-1][token_id].item(),
|
|
|
|
atol=1e-2,
|
|
|
|
rtol=1e-2)
|
2024-03-10 19:49:14 -07:00
|
|
|
assert isinstance(sample_logprob.decoded_token, str), (
|
|
|
|
"The token should be decoded by the time it is returned "
|
2024-03-04 11:54:06 -08:00
|
|
|
" to the user.")
|
|
|
|
|
2024-04-26 22:02:02 +09:00
|
|
|
# Test if prompt logprobs are correctly set.
|
|
|
|
for vllm_result in vllm_results:
|
|
|
|
token_ids = vllm_result.prompt_token_ids
|
|
|
|
prompt_logprobs = vllm_result.prompt_logprobs
|
|
|
|
|
|
|
|
# The first token doesn't have logprob.
|
|
|
|
assert prompt_logprobs[0] is None
|
|
|
|
|
|
|
|
for token_id, logprob_dict in zip(token_ids[1:], prompt_logprobs[1:]):
|
|
|
|
assert token_id in logprob_dict
|
|
|
|
|
2024-03-04 11:54:06 -08:00
|
|
|
|
|
|
|
def test_max_logprobs():
|
|
|
|
runner = VllmRunner("facebook/opt-125m", max_logprobs=1)
|
|
|
|
vllm_sampling_params = SamplingParams(logprobs=1)
|
|
|
|
# should pass
|
|
|
|
runner.generate(["Hello world"], sampling_params=vllm_sampling_params)
|
|
|
|
|
|
|
|
bad_sampling_params = SamplingParams(logprobs=2)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
runner.generate(["Hello world"], sampling_params=bad_sampling_params)
|